Are At Least Two Numbers Equal in This Sum of 100 Terms?

  • Context: MHB 
  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Sum Terms
Click For Summary

Discussion Overview

The discussion revolves around the problem of determining whether at least two numbers among a set of 100 distinct integers from 1 to 100 must be equal, given that the sum of their reciprocals of square roots equals 12.5. The scope includes theoretical exploration and mathematical reasoning.

Discussion Character

  • Exploratory, Mathematical reasoning

Main Points Raised

  • One participant presents the problem statement involving the sum \( S = \dfrac{1}{\sqrt{a_1}}+\dfrac{1}{\sqrt{a_2}}+\cdots+\dfrac{1}{\sqrt{a_{100}}} = 12.5 \) and asks for a proof that at least two of the numbers \( a_i \) are equal.
  • Multiple participants request examples that satisfy the condition \( S = 12.5 \), indicating a desire for concrete instances or a demonstration of the claim.

Areas of Agreement / Disagreement

There is no consensus yet, as participants are seeking examples and proofs without any established agreement on the necessity of the condition regarding equal numbers.

Contextual Notes

The discussion does not clarify the assumptions regarding the distribution of the numbers or the method of proving the claim, leaving open questions about the mathematical steps involved.

Albert1
Messages
1,221
Reaction score
0
$a_1,a_2,...,a_{100}\in \begin{Bmatrix}
1,2,3,-----,100
\end{Bmatrix}$

$S=\dfrac{1}{\sqrt{a_1}}+\dfrac{1}{\sqrt{a_2}}+\cdots+\dfrac{1}{\sqrt{a_{100}}}=12.5$.

Prove that at least two of the numbers are equal
 
Last edited:
Mathematics news on Phys.org
If S is to be rational, the ai expressions have to be perfect squares; so there are only 10 values available for 100 terms.
 
Last edited by a moderator:
Saknussemm said:
If S is to be rational, the ai expressions have to be perfect squares; so there are only 10 values available for 100 terms.
Can you give some examples to make S=12.5 ?
Or if you can prove it the best
 
Albert said:
Can you give some examples to make S=12.5 ?
Or if you can prove it the best

I meant my remark that each and every one $a_i$ expression in $\sum_{i=0}^{100} \frac{1}{\sqrt{a_i}}$ has to be a perfect square as a proof. Because, if a single $a_i$ equals a number like 2, the term $\frac{1}{\sqrt{a_i}}$ is irrational, which means that the sum S in turn will be irrational, and so will never equal a number like $\frac{25}{2}$. This means you will have to build your sum exclusively from terms like 1/10, 1/9, 1/8, etc.

The proof that there is no pair of integers $(a, b)$ such that $\sqrt{2} = \frac{a}{b}$ is due to Euclid. It consists in positing, without loss of generality, that $\frac{a}{b}$ is an irreducible fraction. Rearranging the terms and squaring, you find that both of $a^2$ and $b^2$ are even, meaning that both $a$ and $b$ are even, which contradicts the hypothesis that we have an irreducible fraction. It doesn't seem difficult to extend the proof to the root of any number that is not a perfect square, or to use a similar proof for the sum of 2 irrational numbers.

Now, if instead of requiring a rational result you had required an interval of real numbers, this proof would not be valid.
Then we could use the same kind of device you used to resolve a similar task, namely bound the sum $\sum_{n=1}^{100} \frac{1}{\sqrt{n}}$ by an integral.
Because $y = \frac{1}{\sqrt{x}}$ is monotonically decreasing and positive, we have

$\displaystyle \sum_{n=1}^{100} \frac{1}{\sqrt{n}} \; > \; \int_1^{101} \frac{1}{\sqrt{x}} \,dx \; > \; \int_1^{100} \frac{1}{\sqrt{x}} \,dx \; = \left. 2 \sqrt{x} \; \right\rvert_{1}^{100} \; = \; 18$

To get below 18, you will have to repeat some of the lower numbers.
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K