MHB Are At Least Two Numbers Equal in This Sum of 100 Terms?

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Sum Terms
AI Thread Summary
The discussion centers on proving that in a set of 100 terms selected from the numbers 1 to 100, where the sum of their square roots equals 12.5, at least two numbers must be equal. Participants explore the implications of the equation S = 12.5 and seek examples that satisfy this condition. The challenge lies in demonstrating that the unique values of the selected numbers cannot achieve the required sum without repetition. Various mathematical approaches and potential examples are suggested to illustrate the point. Ultimately, the conclusion emphasizes the necessity of having at least two equal numbers in the set to meet the specified sum.
Albert1
Messages
1,221
Reaction score
0
$a_1,a_2,...,a_{100}\in \begin{Bmatrix}
1,2,3,-----,100
\end{Bmatrix}$

$S=\dfrac{1}{\sqrt{a_1}}+\dfrac{1}{\sqrt{a_2}}+\cdots+\dfrac{1}{\sqrt{a_{100}}}=12.5$.

Prove that at least two of the numbers are equal
 
Last edited:
Mathematics news on Phys.org
If S is to be rational, the ai expressions have to be perfect squares; so there are only 10 values available for 100 terms.
 
Last edited by a moderator:
Saknussemm said:
If S is to be rational, the ai expressions have to be perfect squares; so there are only 10 values available for 100 terms.
Can you give some examples to make S=12.5 ?
Or if you can prove it the best
 
Albert said:
Can you give some examples to make S=12.5 ?
Or if you can prove it the best

I meant my remark that each and every one $a_i$ expression in $\sum_{i=0}^{100} \frac{1}{\sqrt{a_i}}$ has to be a perfect square as a proof. Because, if a single $a_i$ equals a number like 2, the term $\frac{1}{\sqrt{a_i}}$ is irrational, which means that the sum S in turn will be irrational, and so will never equal a number like $\frac{25}{2}$. This means you will have to build your sum exclusively from terms like 1/10, 1/9, 1/8, etc.

The proof that there is no pair of integers $(a, b)$ such that $\sqrt{2} = \frac{a}{b}$ is due to Euclid. It consists in positing, without loss of generality, that $\frac{a}{b}$ is an irreducible fraction. Rearranging the terms and squaring, you find that both of $a^2$ and $b^2$ are even, meaning that both $a$ and $b$ are even, which contradicts the hypothesis that we have an irreducible fraction. It doesn't seem difficult to extend the proof to the root of any number that is not a perfect square, or to use a similar proof for the sum of 2 irrational numbers.

Now, if instead of requiring a rational result you had required an interval of real numbers, this proof would not be valid.
Then we could use the same kind of device you used to resolve a similar task, namely bound the sum $\sum_{n=1}^{100} \frac{1}{\sqrt{n}}$ by an integral.
Because $y = \frac{1}{\sqrt{x}}$ is monotonically decreasing and positive, we have

$\displaystyle \sum_{n=1}^{100} \frac{1}{\sqrt{n}} \; > \; \int_1^{101} \frac{1}{\sqrt{x}} \,dx \; > \; \int_1^{100} \frac{1}{\sqrt{x}} \,dx \; = \left. 2 \sqrt{x} \; \right\rvert_{1}^{100} \; = \; 18$

To get below 18, you will have to repeat some of the lower numbers.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...

Similar threads

Replies
6
Views
2K
Replies
15
Views
2K
Replies
1
Views
1K
Replies
2
Views
1K
Replies
2
Views
2K
Replies
14
Views
2K
Back
Top