Are Both Solutions to the Diophantine Equation $x^4 - 2y^2 = 1$ Valid?

  • Context: MHB 
  • Thread starter Thread starter evinda
  • Start date Start date
Click For Summary
SUMMARY

The Diophantine equation $x^4 - 2y^2 = 1$ has exactly two solutions: $(1, 0)$ and $(-1, 0)$. The discussion reveals that for $x = 2k + 1$, the equation simplifies to $4k(k+1)(2k^2 + 2k + 1) = y^2$, leading to the conclusion that $k$, $k+1$, and $2k^2 + 2k + 1$ must all be perfect squares. The participants clarify that the negative unit also provides a valid solution, emphasizing the importance of considering both positive and negative integers in the factorization process.

PREREQUISITES
  • Understanding of Diophantine equations
  • Familiarity with perfect squares and their properties
  • Knowledge of factorization techniques in number theory
  • Basic concepts of coprimality and integer properties
NEXT STEPS
  • Research the properties of Diophantine equations and their solutions
  • Study the concept of coprime integers and their significance in number theory
  • Explore advanced factorization techniques in algebra
  • Learn about the implications of negative units in integer factorization
USEFUL FOR

Mathematicians, number theorists, and students studying Diophantine equations or integer factorization techniques will benefit from this discussion.

evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hey! (Smirk)

I am looking at the following exercise:

Prove that the diophantine equation $ x^4-2y^2=1 $ has only two solutions.

It is: $$(x−1)(x+1)(x^2+1)=2y^2 $$

If $x=2k \Rightarrow 2y^2=(2k-1)(2k+1)(4k^2+1), \text{ that is not possible, because } 2 \nmid (2k-1)(2k+1)(4k^2+1)$

So,it is $x=2k+1$.

Replacing this,we get:

$$4k(k+1)(2k^2+2k+1)=y^2$$

So, $k,k+1,2k^2+2k+1$ must all be a square.
$$ k=a^2 $$
$$k+1=a^2+1=b^2 $$
$$b^2−a^2=1⇒a=0,b= \pm 1 \Rightarrow k=0 $$
Therefore, $x=1$.I found only the solution: $(1,0)$ .. So,have I done something wrong? (Thinking) (Thinking)
 
Mathematics news on Phys.org
Shouldn't (-1,0) be a solution as well?
 
Deveno said:
Shouldn't (-1,0) be a solution as well?

Yes,but I haven't found this solution with the way that I did it. (Doh)
So,do I have to solve the exercise in an other way? (Thinking)
 
"So, k,k+1,2k^2+2k+1 must all be a square."

I don't see an apparent reason for that.
Like Deveno said, (-1,0) is another solution, then with x=2k+1 follows k=-1,
and -1 is not a square...
 
evinda said:
Hey! (Smirk)

I am looking at the following exercise:

Prove that the diophantine equation $ x^4-2y^2=1 $ has only two solutions.

It is: $$(x−1)(x+1)(x^2+1)=2y^2 $$

If $x=2k \Rightarrow 2y^2=(2k-1)(2k+1)(4k^2+1), \text{ that is not possible, because } 2 \nmid (2k-1)(2k+1)(4k^2+1)$

So,it is $x=2k+1$.

Replacing this,we get:

$$4k(k+1)(2k^2+2k+1)=y^2$$

So, $k,k+1,2k^2+2k+1$ must all be a square.

I don't see how you draw this conclusion. Yes, they are all co-prime, but -1 divides any integer, and is not prime. What happens if $k = -1$?
 
Deveno said:
I don't see how you draw this conclusion. Yes, they are all co-prime, but -1 divides any integer, and is not prime. What happens if $k = -1$?

Taschee said:
"So, k,k+1,2k^2+2k+1 must all be a square."

I don't see an apparent reason for that.
Like Deveno said, (-1,0) is another solution, then with x=2k+1 follows k=-1,
and -1 is not a square...

Sice, $4k(k+1)(2k^2+2k+1)=y^2$

doesn't it mean that $\exists a,b,c \text{ such that } k=a^2, k+1=b^2 \text{ and } 2k^2+2k+1=c^2$ ? Or am I wrong? (Sweating)
 
evinda said:
Hey! (Smirk)

I am looking at the following exercise:

Prove that the diophantine equation $ x^4-2y^2=1 $ has only two solutions.

It is: $$(x−1)(x+1)(x^2+1)=2y^2 $$

If $x=2k \Rightarrow 2y^2=(2k-1)(2k+1)(4k^2+1), \text{ that is not possible, because } 2 \nmid (2k-1)(2k+1)(4k^2+1)$

So,it is $x=2k+1$.

Replacing this,we get:

$$4k(k+1)(2k^2+2k+1)=y^2$$

So, $k,k+1,2k^2+2k+1$ must all be a square.
$$ k=a^2 $$
$$k+1=a^2+1=b^2 $$
$$b^2−a^2=1⇒a=0,b= \pm 1 \Rightarrow k=0 $$
Therefore, $x=1$.I found only the solution: $(1,0)$ .. So,have I done something wrong? (Thinking) (Thinking)
you have found

$k , k+1, 2k^2 + 2k +1$ must all be square

you also can have
( alternatively)
$- k , -(k+1), 2k^2 + 2k +1$ must all be square which gives the second solution
 
Put another way, we can factor $c^2 = a^2b^2$ two ways:

$c = a^2b^2 = (-a^2)(-b^2)$.

Prime factorization is only unique "up to units" and the integers have TWO units: 1 and -1. People often overlook the second unit.
 
evinda said:
Sice, $4k(k+1)(2k^2+2k+1)=y^2$

doesn't it mean that $\exists a,b,c \text{ such that } k=a^2, k+1=b^2 \text{ and } 2k^2+2k+1=c^2$ ? Or am I wrong? (Sweating)
Not necessarily.
You need to prove, that k, k+1 and 2k^2+2k+1 are coprime:
k and k+1 are obviously coprime, if p|k, then p|2k^2 and p|2k,
so p \nmid 2k^2+2k+1;
If p|k+1, then p|2(k+1)^2 = (2k^2+2k+1) + (k+1) + k
Suppose p|2k^2+2k+1 , then you have p|k in contradiction to p|k+1

Then you still have the possibility that two of those terms are negativ squares,
i.e. k=-a^2, k+1=-b^2;
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K