MHB Are Hom_R(R, M) and M Isomorphic?

  • Thread starter Thread starter mathmari
  • Start date Start date
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Let $R$ be a commutative ring and $M$ be a $R$-module.
I want to show that $\text{Hom}_R(R,M)\cong M$.

I have done the following:

We consider the mapping $\phi : \text{Hom}_R(R,M)\rightarrow M$ with $f\mapsto f(1_R)$.

Let $f,g\in \text{Hom}_R(R,M)$.
We have that
$$\Phi (f+g)=(g+g)(1_R)=f(1_R)+g(1_R)=\Phi (f)+\Phi (g) \\ \Phi (af)=(af)(1_R)=af(1_R)=a\phi (f)$$
So, $\Phi$ is an homomorphism.

Let $\Phi (f)=\Phi (g)$. Then $f(1_R)=g(1_R)$.
So, $f(r)=rf(1_R)=rg(1_R)=g(r), \forall r\in R$.
Therefore, $\phi$ is 1-1.

For each $y\in M$ we define $f$ as follows:
$f: R\rightarrow M$ with $f(r)=ry$
So, for each $y\in M$ we have that $\Phi (f)=f(1_R)=y$.
Therefgore, $\Phi$ is onto.

Is everything correct? (Wondering)
 
Physics news on Phys.org
It's all correct! (Nod)
 
Great! (Smile)

I have also an other question... Does it stand that $$\text{Hom}_R(R^n,M)\cong \prod_{I=0}^n \text{Hom}_R(R,M)$$ ? (Wondering)
 
Almost. You need to change $I = 0$ to $I = 1$.

I will use the symbol $\operatorname{Hom}_R(R,M)^n$ to represent $\prod_{i = 1}^n \operatorname{Hom}_R(R,M)$. For $1 \le j \le n$, let $e_j\in R^n$ be the element with $1$ in the $j$th coordinate and zeros elsewhere; let $i_j : R \to R^n$ be the $j$th inclusion mapping $r \mapsto re_j$. Since the inclusion mappings are $R$-linear, there is an $R$-linear mapping

$$\Phi : \operatorname{Hom}_R(R^n,M) \to \operatorname{Hom}_R(R,M)^n$$

given by $\Phi(f) = (f\circ i_1,\ldots, f\circ i_n)$. I claim that the mapping

$$\Psi : \operatorname{Hom}_R(R,M)^n \to \operatorname{Hom}_R(R^n,M)$$

defined by the equation $\Psi(g_1,\ldots, g_n) = g_1\circ \pi_1 + \cdots +g_n\circ \pi_n$ is the inverse of $\Psi$. Here, $\pi_i : R^n \to R$ ($1 \le i \le n$) is the projection mapping $\pi_i(r_1,\ldots, r_n) = r_i$. It's important to note that $\pi_i \circ i_j$ is zero for $i \neq j$ and $\operatorname{id}_R$ for $i = j$. Indeed, for all $r\in R$, $(\pi_i \circ i_j)(r) = \pi_i(re_j) = r\delta_{ij}$, which is equal to $0$ if $i \neq j$ and $r$ when $i = j$. Now

$$\Phi(\Psi(g_1,\ldots, g_n)) = \Phi(g_1 + \cdots + g_n) = \left(\sum_{k = 1}^n g_k \circ i_1 \circ \pi_k, \ldots, \sum_{k = 1}^n g_k \circ i_n \circ \pi_k\right) = \left(\sum_{k = 1}^n g_k\delta_{1k},\ldots, \sum_{k = 1}^n g_n \delta_{nk}\right) = (g_1,\ldots, g_n)$$

and

$$\Psi(\Phi(f)) = \Psi(f\circ i_1,\ldots, f\circ i_n) = f\circ i_1\circ \pi_1 + \cdots + f\circ i_n \circ \pi_n = f\circ (i_1 \circ \pi_1 + \cdots + i_n \circ \pi_n) = f$$

where the last identity follows from the fact that $i_1 \circ \pi_1 + \cdots + i_n \circ \pi_n$ is the identity on $R$:

$$(i_1 \circ \pi_1 + \cdots + i_n \circ \pi_n)(r_1,\ldots r_n) = i_1(r_1) + \cdots + i_n(r_n) = r_1 e_1 + \cdots + r_n e_n = (r_1,\ldots, r_n)$$

Therefore $\Psi$ is the inverse of $\Phi$ and $\Phi$ is a bijection. Since $\Phi$ is also $R$-linear, it is an $R$-module isomorphism.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
Back
Top