MHB Are local min/max of a cubic function determined by the zeros alone?

Click For Summary
Cubic functions' local minima and maxima are not solely determined by their zeros; instead, they depend on the first derivative's roots. While the zeros indicate where the function intersects the x-axis, the first derivative reveals where the function is increasing or decreasing. A root of the first derivative corresponds to an extremum only if the sign changes around that root, which occurs with odd multiplicity. In cases like the function y=x^3, the even multiplicity of the derivative's root results in no extremum at that point. Thus, to accurately identify local extrema, one must analyze the first derivative rather than relying solely on the zeros.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
Just curious are cubic functions dirvel from just having the zeros, does that always determine where the local min/max is. I notice many cubic graphs given on homework show where the zeros are but the local min/max is not given.

For example
$$y=\left(x-4\right)\left(x+1\right)(x+2)={x}^{3}-{x}^{2 }-10x-8$$
$$y'=3{x}^{2 }-2x-10$$

$y'=0$ is $ - 1.5226,2.1893$ and min=-24.1926 max=1.3778

So I presume the local min/max are fixed values given the zeros
 
Last edited:
Mathematics news on Phys.org
If a cubic function has relative extrema, then they will occur at places where the first derivative has roots. But, at the roots of the first derivative, you won't always find an extremum...consider $y=x^3$.
 
OK I thought the humps could be moved despite the zeros but doesn't look like it.
So the only to find the extreme is by the derivative
 
karush said:
OK I thought the humps could be moved despite the zeros but doesn't look like it.
So the only to find the extreme is by the derivative

Yes, the first derivative will tell you where the function itself is increasing/decreasing/turning. If the first derivative has differing signs on either side of a root, then you know that root corresponds with an extremum for the function. This will happen for all roots as long as they are all of odd multiplicity.

Observe that in the example I gave of $y=x^3$, the first derivative has a root of even multiplicity, and so its sign does not change as it crosses this first derivative root.
 

Similar threads