Are Some Real Numbers Countable and Others Uncountable?

  • Context: Undergrad 
  • Thread starter Thread starter emptyboat
  • Start date Start date
  • Tags Tags
    Numbers Real numbers
Click For Summary
SUMMARY

The discussion centers on the countability of real numbers versus natural numbers, with participants debating the validity of various arguments. One participant asserts that real numbers are countable due to a proposed one-to-one correspondence with natural numbers, while others refute this claim by referencing Cantor's diagonal argument, which demonstrates that real numbers are uncountable. The conversation highlights the distinction between countably infinite sets, such as natural numbers, and uncountably infinite sets, such as real numbers, emphasizing the flaws in the initial argument presented.

PREREQUISITES
  • Understanding of countable and uncountable sets
  • Familiarity with Cantor's diagonal argument
  • Basic knowledge of real numbers and natural numbers
  • Concept of cardinality in set theory
NEXT STEPS
  • Study Cantor's proof of the uncountability of real numbers
  • Explore the concept of cardinality and its implications in set theory
  • Learn about rational numbers and their countability
  • Investigate the implications of Russell's Paradox in set theory
USEFUL FOR

Mathematicians, students of mathematics, and anyone interested in set theory and the foundations of mathematics will benefit from this discussion.

  • #121
PeroK said:
Banal is not the word I would use!
You minimalist!
 
  • Like
Likes   Reactions: sysprog
Physics news on Phys.org
  • #122
Hey, please wait @PeroK, @jbriggs444 used the nonal form "banality", not simply the adjective "banal".
 
  • #123
Hey , when we were asked "are real numbers countable", why didn't we just say "well, some of them are, but not all of them are", and leave it at that? -- perhaps that would have been underinformative . . .
 
  • #124
jbriggs;

The demonstration that the sequence L is "equivalent" to the binary tree goes through just fine. The binary tree contains all infinite sequences by construction. L contains all infinite sequences by the hypothetical. So the set of sequences in L does indeed match the set of paths through the binary tree. The two are "equivalent" in this sense.

The sequence d taken from the diagonal of L is present in the tree. Yes. The sequence p which is the complement of that is also present in the tree. Yes. That means that the sequence p is present in L. Even though Cantor's construction guarantees that the sequence p is not present in L.

Things were looking good up to the red statement.

Always searching for simplicity, here is another graphic.
The sequences remain defined as before and 12 are randomly selected and identified with a line number. Make a copy of a randomly selected sequence from the sample, say 9, and compare to L.
1. If L is complete, result is S9 will differ from all S in L except itself.
2. If L is incomplete, result is S9 will differ from all remaining S in L.
Cantor declares the transformed diagonal p as new, based on (2).
If any 1 of the 12 was removed from L and compared, the result would be (2.).
Thus (2) is not a criterion for a new sequence, since all 12 are members of L. The result in (2) is a property of any set of unique elements. Extending that property to L, p is not new, it is a missing sequence. The verification that p is a new sequence would require a comparison of all its positions, which is not possible. 'All remaining' does not equal 'all'. His interpretation of p as new excludes it from L, and prevents the one comparison that makes L complete. The subtle difference of the one comparison of 0 difference depends on inclusion or exclusion of the sequence used in the comparison.
 

Attachments

  • cantor diag5.gif
    cantor diag5.gif
    4.6 KB · Views: 188
  • Skeptical
Likes   Reactions: weirdoguy
  • #125
sysprog said:
Hey , when we were asked "are real numbers countable", why didn't we just say "well, some of them are, but not all of them are", and leave it at that? -- perhaps that would have been underinformative . . .
Very underinformative.
 
  • Haha
Likes   Reactions: sysprog
  • #126
sysprog said:
Hey , when we were asked "are real numbers countable", why didn't we just say "well, some of them are, but not all of them are", and leave it at that? -- perhaps that would have been underinformative . . .
I don't quite understand, what do you mean by this specifically? In case you meant to say that some real numbers can labeled as "countable" and others can labeled as "uncountable", then there are some (additional) implicit assumptions involved in it.

For example, specifically think of a model where CH is false and cardinality of real numbers is ##\aleph_2## . Then the statement you wrote makes sense "after" we assume some "reasonable" bijection between the reals and ##\omega_2##. Then, in some sense, one could say those reals that are associated with ordinals less than ##\omega_1## are countable while others are uncountable. But I don't know what would be the criteria of assigning the word "reasonable" in that case.

In some cases, there can definitely be some agreement on it. For example, in constructibility, CH is true and the reals have ##\aleph_1## cardinality. In that case, there would usually be only a few candidates for what would constitute a "reasonable" bijection. Usually every computable real (or even every arithmetic real) will be associated with a very very small ordinal in that case [think something like ##<\omega^3## or ##<\omega^4##]. But of course the exact specific ordinal depends on fixing a single bijection. There are few more things that can be said on this topic but it will get a bit lengthy (so I have skipped that).

P.S.
It seems that there is one other point that kind of arises from this discussion. Perhaps you had something similar in mind. There should be some reals which would be common to every model of set theory. I wonder whether this notion can be fully formalized in some sense (I don't have enough knowledge/understanding to be certain of the subtleties that could be involved here).
 
Last edited:
  • #127
SSequence said:
sysprog said:
Hey , when we were asked "are real numbers countable", why didn't we just say "well, some of them are, but not all of them are", and leave it at that? -- perhaps that would have been underinformative . . .
SSequence said:
I don't quite understand, what do you mean by this specifically? In case you meant to say that some real numbers can labeled as "countable" and others can labeled as "uncountable", then there are some (additional) implicit assumptions involved in it.

For example, specifically think of a model where CH is false and cardinality of real numbers is ##\aleph_2## . Then the statement you wrote makes sense "after" we assume some "reasonable" bijection between the reals and ##\omega_2##. Then, in some sense, one could say those reals that are associated with ordinals less than ##\omega_1## are countable while others are uncountable. But I don't know what would be the criteria of assigning the word "reasonable" in that case.

In some cases, there can definitely be some agreement on it. For example, in constructibility, CH is true and the reals have ##\aleph_1## cardinality. In that case, there would usually be only a few candidates for what would constitute a "reasonable" bijection. Usually every computable real (or even every arithmetic real) will be associated with a very very small ordinal in that case [think something like ##<\omega^3## or ##<\omega^4##]. But of course the exact specific ordinal depends on fixing a single bijection. There are few more things that can be said on this topic but it will get a bit lengthy (so I have skipped that).

P.S.
It seems that there is one other point that kind of arises from this discussion. Perhaps you had something similar in mind. There should be some reals which would be common to every model of set theory. I wonder whether this notion can be fully formalized in some sense (I don't have enough knowledge/understanding to be certain of the subtleties that could be involved here).
Thanks for all of that elucidative work; I was trying to make a joke, but I think that I'm not especially good at being funny . . .
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 18 ·
Replies
18
Views
3K
Replies
4
Views
2K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 55 ·
2
Replies
55
Views
8K
  • · Replies 3 ·
Replies
3
Views
948
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K