Graduate Are the numbers ##eπ## and ##e+ π## transcendental?

  • Thread starter Thread starter chwala
  • Start date Start date
  • Tags Tags
    Numbers
Click For Summary
The discussion centers on whether the numbers eπ and e + π are transcendental. While standard theorems on transcendence may not apply, the relevance of these numbers is questioned, as they do not appear naturally in mathematical contexts. It is clarified that algebraic numbers can be rational but are not limited to integers, and that both e and π are irrational, complicating their classification in polynomial equations. The conversation also highlights that while π and e are transcendental, their sums or products may not necessarily retain that property. Overall, the transcendental nature of e + π or eπ remains an open question in mathematics.
chwala
Gold Member
Messages
2,827
Reaction score
415
TL;DR
A number is called an algebraic number if it is a solution of a polynomial equation ##a_0 z^n+a_1z^{n-1} + ... a_{n-1}z + a_n =0## where ##a_0,a_1 ...a_n## are integers...otherwise transcendental.
My question is [following the example on the attachment which is apparently clear to me].
1. Are the numbers ##eπ## and ##e+ π## Transcendental?
2. Algebraic numbers can also be rational and not necessarily integers? is that correct?
 

Attachments

Physics news on Phys.org
All rational numbers are algebraic: n/m is the solution of mz - n = 0.
 
chwala said:
TL;DR Summary: A number is called an algebraic number if it is a solution of a polynomial equation ##a_0 z^n+a_1z^{n-1} + ... a_{n-1}z + a_n =0## where ##a_0,a_1 ...a_n## are integers...otherwise transcendental.

My question is [following the example on the attachment which is apparently clear to me].
1. Are the numbers ##eπ## and ##e+ π## Transcendental?
Presumably. The standard theorems about transcendency don't apply to them, but I haven't checked in detail. More interesting is the question: Who cares? These numbers do not occur naturally and I haven't seen any theorem that needed to know whether ##\mathbb{Q}[e,\pi ]## is of transcendental degree one or two. I guess literally nobody will expect it to be one.

chwala said:
2. Algebraic numbers can also be rational and not necessarily integers? is that correct?
##\mathbb{Z}\subsetneq \mathbb{Q} \subsetneq \mathbb{A}\subsetneq \mathbb{C}## if ##\mathbb{A}## is the field of all algebraic numbers over the rationals.
 
  • Like
Likes dextercioby and chwala
What i would add on this is that ##e## and ## π## are irrational thus we cannot solve for them in a given equation say,

##z-e- π=0##

as is the case with algebraic terms in any given polynomial.
 
chwala said:
What i would add on this is that ##e## and ## π## are irrational thus we cannot solve for them in a given equation say,

##z-e- π=0## as is the case with polynomials.
You must be careful. ##\pi, -\pi## and ##\pi^{-1}## are transcendent, but neither is ##(\pi)+(-\pi)## nor ##(\pi)\cdot (\pi^{-1}).##
 
  • Like
Likes chwala and pbuk
chwala said:
What i would add on this is that ##e## and ## π## are irrational
So is ## \sqrt 2 ## (but it is not of course transcendental, by definition).
fresh_42 said:
You must be careful. ##\pi, -\pi## and ##\pi^{-1}## are transcendent, but neither is ##(\pi)+(-\pi)## nor ##(\pi)\cdot (\pi^{-1}).##
And nor is ## e^{i \pi} ##.
 
I believe it is an open problem: are ##\frac{\pi}{e}, e\pi, e+\pi## irrational? Transcendental?
See no.22

It is known that either ##\pi+e## or ##e\pi## is transcendental.
If both are algebraic, then ##(\pi+e)^2 - 4e\pi## is algebraic. So, ##\pi-e## is algebraic, which implies
<br /> \frac{1}{2}((\pi+e) - (\pi-e)) = e<br />
is algebraic, a contradiction.
 
Last edited:
  • Informative
  • Like
Likes malawi_glenn and fresh_42

Similar threads

  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
5K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
8
Views
2K
Replies
14
Views
2K
  • · Replies 33 ·
2
Replies
33
Views
4K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 19 ·
Replies
19
Views
4K