Are there any energy change of photon in different frame?

ndung200790
Messages
519
Reaction score
0
Please teach me about this:
Are there any change in energy and momentum of photon in different frame?Are there any analogies with Doppler effect?
Thank you very much in advance.
 
Physics news on Phys.org
Yes! Indeed photons can be red or blueshifted, this doppler effect is how we do many calculations in astronomy (e.g. finding the speed of objects moving towards or away from us).
 
Except for Doppler effect,are there any changing in energy-momentum of photon in different frame.Example:Consider Compton process in lab frame and center of mass frame.Because the frequence of photon in Doppler effect depends on the moving towards each other or far away of receiver and sourse
 
Energy and momentum transform between different inertial reference frames exactly the same way as time and position, via the Lorentz transformation.

The time-position four-vector: (ct, x, y, z)

One way to write the energy-momentum four-vector: (E, p_x c, p_y c, p_z c)

If we need to deal only with x-components, the Lorentz transformation for time and position looks like this:

ct^\prime = \gamma (ct - \beta x)

x^\prime = \gamma (x - \beta ct)

For energy and momentum:

E^\prime = \gamma (E - \beta p_x c)

p^\prime_x c = \gamma (p_x c - \beta E)

where as usual \beta = v / c and

\gamma = \frac{1}{\sqrt{1 - v^2 / c^2}} = \frac{1}{\sqrt{1 - \beta^2}}

and v is the relative velocity of the two frames.

For a photon, E = pc, so the Lorentz transformation for the one-dimensional case becomes

E^\prime = \gamma (E - \beta E)

E^\prime = \gamma (1 - \beta) E

E^\prime = \sqrt {\frac {1 - \beta}{1 + \beta}} E
 
Last edited:
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...
So, to calculate a proper time of a worldline in SR using an inertial frame is quite easy. But I struggled a bit using a "rotating frame metric" and now I'm not sure whether I'll do it right. Couls someone point me in the right direction? "What have you tried?" Well, trying to help truly absolute layppl with some variation of a "Circular Twin Paradox" not using an inertial frame of reference for whatevere reason. I thought it would be a bit of a challenge so I made a derivation or...

Similar threads

Replies
1
Views
984
Replies
17
Views
3K
Replies
87
Views
5K
Replies
4
Views
1K
Replies
19
Views
1K
Replies
35
Views
5K
Replies
17
Views
2K
Back
Top