MHB Are there more solutions than this? Limit Problem

  • Thread starter Thread starter Vanrichten
  • Start date Start date
  • Tags Tags
    Limit
Click For Summary
The discussion addresses the misconception that $\sin(x)/x$ equals 1 for all real numbers, clarifying that it only approaches 1 as x approaches 0 through limits. It critiques the assumption that limits can be taken consecutively without conditions on continuity, emphasizing that this is not generally valid. The use of Taylor series is suggested as a proper method to justify the limit of $\sin(x)/x$ as x approaches 0. Additionally, the conversation confirms that limits can be split into products when both individual limits exist. Overall, the analysis reinforces the importance of understanding limits in calculus.
Vanrichten
Messages
12
Reaction score
1

Attachments

  • number 6.png
    number 6.png
    2.9 KB · Views: 87
  • 6 solution.jpg
    6 solution.jpg
    28.5 KB · Views: 85
Physics news on Phys.org
The answer is correct, but I have a couple of remarks. First, you wrote two times that $\sin(x)/x$ literally equals 1. In fact, $\sin(x)/x\ne1$ for all $x\in\mathbb{R}$. The familiar relationship between $\sin(x)/x$ and 1 always involves limits.

Second, in the last line you seem you use the fact that \[
\lim_{(x,y)\to(x_0,y_0)} f(x,y)=\lim_{y\to y_0} f\left(\lim_{x\to x_0} f(x,y), y\right)
\]
i.e., that you can take limits consecutively. I believe this is not even true in general when $f$ is continuous at $(x_0,y_0)$.
 
Evgeny.Makarov said:
The answer is correct, but I have a couple of remarks. First, you wrote two times that $\sin(x)/x$ literally equals 1. In fact, $\sin(x)/x\ne1$ for all $x\in\mathbb{R}$. The familiar relationship between $\sin(x)/x$ and 1 always involves limits.

Second, in the last line you seem you use the fact that \[
\lim_{(x,y)\to(x_0,y_0)} f(x,y)=\lim_{y\to y_0} f\left(\lim_{x\to x_0} f(x,y), y\right)
\]
i.e., that you can take limits consecutively. I believe this is not even true in general when $f$ is continuous at $(x_0,y_0)$.
So, how would I rewrite this? I'm not really sure =/
 
If you want to justify $\lim_{x\to0}\sin(x)/x$ using Taylor series, then you say that by Taylor's theorem,
\[
\sin x=x+\alpha(x)x
\]
where $\alpha(x)\to0$ as $x\to0$. Then $\sin(x)/x=1+\alpha(x)$, so
\[
\lim_{x\to0}\sin(x)/x= \lim_{x\to0}(1+\alpha(x)) =\lim_{x\to0}1+ \lim_{x\to0}\alpha(x)=1
\]
Using small-o notation,
\[
\lim_{x\to0}\sin(x)/x= \lim_{x\to0}(x+o(x))/x
=\lim_{x\to0}(1+o(1))=1
\]

Concerning the last line, I just wasn't sure what fact you relied on. You can split the limit into the product of limits because both of them exist.
\[
\lim_{(x,y)\to(0,1)}\frac{y\sin x}{x(y+1)} =
\left(\lim_{(x,y)\to(0,1)}\frac{\sin x}{x}\right) \left(\lim_{(x,y)\to(0,1)}\frac{y}{y+1}\right)
\]
Now since both functions depend on only one argument, we can use
\[
\lim_{(x,y)\to(x_0,y_0)}f(x) =\lim_{x\to x_0}f(x)
\]
and similarly for $y$, which follow easily from the definition of limits. So,
\[
\lim_{(x,y)\to(0,1)}\frac{\sin x}{x}= \lim_{x\to0}\frac{\sin x}{x}=1
\]
and
\[
\lim_{(x,y)\to(0,1)}\frac{y}{y+1}= \lim_{x\to1}\frac{y}{y+1}=\frac{1}{2}
\]

All in all,
\[
\lim_{(x,y)\to(0,1)}\frac{y\sin x}{x(y+1)} =
1\cdot\frac{1}{2}=\frac{1}{2}
\]
 
Evgeny.Makarov said:
If you want to justify $\lim_{x\to0}\sin(x)/x$ using Taylor series, then you say that by Taylor's theorem,
\[
\sin x=x+\alpha(x)x
\]
where $\alpha(x)\to0$ as $x\to0$. Then $\sin(x)/x=1+\alpha(x)$, so
\[
\lim_{x\to0}\sin(x)/x= \lim_{x\to0}(1+\alpha(x)) =\lim_{x\to0}1+ \lim_{x\to0}\alpha(x)=1
\]
Using small-o notation,
\[
\lim_{x\to0}\sin(x)/x= \lim_{x\to0}(x+o(x))/x
=\lim_{x\to0}(1+o(1))=1
\]

Concerning the last line, I just wasn't sure what fact you relied on. You can split the limit into the product of limits because both of them exist.
\[
\lim_{(x,y)\to(0,1)}\frac{y\sin x}{x(y+1)} =
\left(\lim_{(x,y)\to(0,1)}\frac{\sin x}{x}\right) \left(\lim_{(x,y)\to(0,1)}\frac{y}{y+1}\right)
\]
Now since both functions depend on only one argument, we can use
\[
\lim_{(x,y)\to(x_0,y_0)}f(x) =\lim_{x\to x_0}f(x)
\]
and similarly for $y$, which follow easily from the definition of limits. So,
\[
\lim_{(x,y)\to(0,1)}\frac{\sin x}{x}= \lim_{x\to0}\frac{\sin x}{x}=1
\]
and
\[
\lim_{(x,y)\to(0,1)}\frac{y}{y+1}= \lim_{x\to1}\frac{y}{y+1}=\frac{1}{2}
\]

All in all,
\[
\lim_{(x,y)\to(0,1)}\frac{y\sin x}{x(y+1)} =
1\cdot\frac{1}{2}=\frac{1}{2}
\]
That makes perfect sense ! Awesome thank you so much.
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 16 ·
Replies
16
Views
1K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K