MHB Are These Row Equivalent Matrices? Why Am I Getting Different Results?

Pull and Twist
Messages
48
Reaction score
0
I am having trouble with the following problem;

a.) Find a matrix B in reduced echelon form such that B is row equivalent to the given matrix A.

A=$$\left[\begin{array}{c}1 & 2 & 3 & -1 \\ 3 & 5 & 8 & -2 \\ 1 & 1 & 2 & 0 \end{array}\right]$$

So using my calculator I am able to get,

B=$$\left[\begin{array}{c}1 & 5/8 & 8/3 & -2/3 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{array}\right]$$

The problem is that the book claims that B should be;

B=$$\left[\begin{array}{c}1 & 2 & 3 & -1 \\ 0 & -1 & -1 & 1 \\ 0 & 0 & 0 & 0 \end{array}\right]$$

Which is weird cause according to the row equivalency theorem, any B of A in REF should be the same unique row equivalent matrix. Why am I not getting the same result?? I am using a TI-83 Plus.
 
Physics news on Phys.org
PullandTwist said:
I am having trouble with the following problem;

a.) Find a matrix B in reduced echelon form such that B is row equivalent to the given matrix A.

A=$$\left[\begin{array}{c}1 & 2 & 3 & -1 \\ 3 & 5 & 8 & -2 \\ 1 & 1 & 2 & 0 \end{array}\right]$$

So using my calculator I am able to get,

Unfortunately, we cannot verify your calculator input, nor the accuracy of said calculator. Sorry about that.

B=$$\left[\begin{array}{c}1 & 5/8 & 8/3 & -2/3 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{array}\right]$$

The problem is that the book claims that B should be;

B=$$\left[\begin{array}{c}1 & 2 & 3 & -1 \\ 0 & -1 & -1 & 1 \\ 0 & 0 & 0 & 0 \end{array}\right]$$

Which is weird cause according to the row equivalency theorem, any B of A in REF should be the same unique row equivalent matrix. Why am I not getting the same result?? I am using a TI-83 Plus.

only RREF is unique, the matrix in your book appears to be properly calculated, but it is NOT in RREF, nor is your matrix $B$ (you have non-zero entries in row 1 above the leading one in row 2, as does the matrix in your book). The RREF can be found here:

Wolfram|Alpha: Computational Knowledge Engine

I verified your book's answer, using the following steps:

a) Subtract 3 times row 1 from row 2
b) Multiply row 2 by -1
c) Subtract row 1 from row 3
d) Add row 2 to row 3

Row-reduction is a path fraught with peril, simple mistakes can ruin everything.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Replies
2
Views
3K
Replies
7
Views
1K
Replies
5
Views
1K
Replies
2
Views
1K
Replies
7
Views
2K
Replies
1
Views
1K
Replies
3
Views
1K
Back
Top