Are X and Y dependent random variables?

docnet
Messages
796
Reaction score
488
Homework Statement
.
Relevant Equations
.
Screen Shot 2021-12-09 at 3.31.44 AM.png
Screen Shot 2021-12-09 at 3.34.30 AM.png

(a) the agrea of the triangleses is 1, so γ one.

(b) I'm not sure how to prove. i feel like ##X## and ##Y## are dependent because ##E(Y|X=0)=\frac{1}{2}## and ##E(Y|X=1)=0## so ##Y## seems dependent on ##X##. ##f_X=1-x## for ##x>0## ane ##f_X=1+x## for ##x<0## so X seems independent on Y.
 
Last edited:
Physics news on Phys.org
Look fine
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top