MHB Area and angles of iso triangle given find sides

AI Thread Summary
The discussion focuses on calculating the sides of an isosceles triangle with an area of 100 and internal angles of 40°, 70°, and 70°. The area formula A = 1/2 * b * h is applied, leading to the equation 100 = 1/2 * (z * sin(70°)) * (2z * cos(70°)), where z represents the length of one of the equal sides. The Law of Sines is also referenced to derive additional relationships, specifically A = B * (sin(a) / sin(b)) and A_T = 1/2 * B^2 * sin(a). Simplification techniques, such as using the identity sin(2x) = 2cos(x)sin(x), are suggested for further calculations. The thread also includes a user inquiry about posting new threads on the forum.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
Given an Isosceles triangle with the area of 100 with internal angles of
$$40^o, 70^o,70^o$$
$A=\frac{1}{2}bh$
so
$100=\frac{1}{2}\left(z\sin\left({70^O}\right)\right)\left(2z\cos\left({70^o}\right)\right)$
$z$ is length of one the equal sides

At least started here
 
Last edited:
Mathematics news on Phys.org
Consider the following diagram:

View attachment 5343

Now, using the Law of Sines, we may state:

$$A=B\frac{\sin(a)}{\sin(b)}$$

If we denote the area of the triangle with $A_T$, then we may also state:

$$A_T=\frac{1}{2}B^2\sin(a)$$

Now, just solve for $B$, and then you will know $A$ as well. Then you will have formulas that you can plug into the given data. :)
 

Attachments

  • karush4.png
    karush4.png
    883 bytes · Views: 108
karush said:
Given an Isosceles triangle with the area of 100 with internal angles of
$$40^o, 70^o,70^o$$
$A=\frac{1}{2}bh$
so
$100=\frac{1}{2}\left(z\sin\left({70^O}\right)\right)\left(2z\cos\left({70^o}\right)\right)$
$z$ is length of one the equal sides

At least started here
I think what you have done is correct just remember that $\sin(2x) = 2\cos(x)\sin(x)$ to simplify.

MarkFL said:
...
Hello, Admin. How do I post a thread? No bottom to click. I can only reply. (Worried)
 
stud17 said:
...Hello, Admin. How do I post a thread? No bottom to click. I can only reply. (Worried)

If you browse to a forum, you will see, above and below the thread listing, large buttons labeled "+ Post New Thread" that will allow you to begin a new thread in that forum. :)
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top