MHB Area of Triangle ABC Given Dimensions

  • Thread starter Thread starter maxkor
  • Start date Start date
  • Tags Tags
    Area
maxkor
Messages
79
Reaction score
0
In triangle ABC $AC=BD, CE=2, ED=1, AE=4$ and $\angle CAE=2 \angle DAB$. Find area ABC.
 

Attachments

  • 154858.png
    154858.png
    2.1 KB · Views: 106
Mathematics news on Phys.org
Beer induced request follows.
maxkor said:
In triangle ABC $AC=BD, CE=2, ED=1, AE=4$ and $\angle CAE=2 \angle DAB$. Find area ABC.
Please show us what you have tried and exactly where you are stuck.
We can't help you if we don't where you are stuck.
 
This is what it looks like, but how to justify the red ones or maybe there is another way?
 

Attachments

  • 154882.png
    154882.png
    4 KB · Views: 119
How did you get those?
 
Geogebra...
 
In your diagram, all three sides of $\triangle AEC$ are known. Using the law of cosines you get $2\alpha = \cos^{-1}(7/8)$ and $\alpha \approx 14.47751219^{\circ}$.

Continuing to use the law of cosines we get $AD=\dfrac{3\sqrt{10}}{2}$ and $AB=3\sqrt{6}$.

Finally, using the law of cosines on $\triangle ABD$ we get $\alpha \approx 71.170769^{\circ}$.

Your diagram is incorrect.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top