MHB Arent quadratic functions supposed to be symmetrical?

Click For Summary
Quadratic functions are indeed symmetrical, specifically about a vertical line that passes through their vertex. The function f(x) = x^2 + 3x + 6 can be rewritten by completing the square to reveal its vertex at (-3/2, 15/4). The symmetry of the parabola is confirmed as it opens upwards, with its minimum point at this vertex. The derivative f'(x) = 2x + 3 indicates the slope at any point, but does not affect the overall symmetry of the function. Understanding the vertex is key to grasping the symmetry of quadratic functions.
Jayden1
Messages
19
Reaction score
0
As we were talking about earlier.

f(x) = x^2 + 3x + 6
f ' (x) = 2x + 3

P1 = (0, f(0))

f ' (0) = 3.

This is not symetrical...

I hope you guys enjoy my question bombarding. As there are a lot of maths concepts that make me want to cry. It's funny, half the people in my degree fail their programming units and easily pass maths. However I easily pass my programming units and fail at maths. Sigh..
 
Physics news on Phys.org
They are symmetrical about the line perpendicular to the directrix, and going through the focus. To find that, I would complete the square. In your case, you get

$$f(x)=x^{2}+3x+6=x^{2}+3x+\frac{9}{4}-\frac{9}{4}+6=\left(x+\frac{3}{2}\right)^{2}+\frac{15}{4}.$$

This is a parabola opening up - its minimum occurs at $x=-3/2$. Plug in that $x$-value to obtain the $f(-3/2)=15/4$. So the minimum occurs at $(-3/2,15/4)$. The parabola is symmetric about the line $x=-3/2$. See here.
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
7
Views
2K