What Is the Common Difference in This Arithmetic Progression?

Click For Summary
The discussion revolves around solving for the common difference, d, in a finite arithmetic progression where the sum, S_n, increases under specific conditions. Initially, the problem states that increasing d by 2 results in S_n tripling, while increasing d by 4 results in S_n quintupling. Participants initially struggled with the interpretation of the problem, leading to incorrect conclusions, such as a1 equaling zero. After clarifying the problem statement, the correct value for d was determined to be 4/3. The conversation highlights the importance of precise problem interpretation in mathematical solutions.
kaspis245
Messages
189
Reaction score
1

Homework Statement


A finite arithmetic progression is given such that ##S_n>0## and ##d>0##. If the first member of the progression remains the same but ##d## increases by 2, then ##S_n## increases 3 times. If the first member of the progression remains the same but ##d## increases 4 times, then ##S_n## increases 5 times. Find ##d##.

Homework Equations


##S_n=\frac{2a_1+d(n-1)}{2}\cdot n##

The Attempt at a Solution


##\frac{2a_1+2d(n-1)}{2}\cdot n=\frac{2a_1+d(n-1)}{2}\cdot n \cdot 3##
##\frac{2a_1+4d(n-1)}{2}\cdot n=\frac{2a_1+d(n-1)}{2}\cdot n \cdot 5##

When I try to solve this I get ##a_1=0## which is clearly not possible. Can somebody explain me what am I doing wrong?
 
Last edited:
Physics news on Phys.org
kaspis245 said:

Homework Statement


A finite arithmetic progression is given such that ##S_n>0## and ##d>0##. If the first member of the progression remains the same but ##d## increases 2 times, then ##S_n## increases 3 times. If the first member of the progression remains the same but ##d## increases 4 times, then ##S_n## increases 5 times. Find ##d##.

Homework Equations


##S_n=\frac{2a_1+d(n-1)}{2}\cdot n##

The Attempt at a Solution


##\frac{2a_1+2d(n-1)}{2}\cdot n=\frac{2a_1+d(n-1)}{2}\cdot n \cdot 3##
##\frac{2a_1+4d(n-1)}{2}\cdot n=\frac{2a_1+d(n-1)}{2}\cdot n \cdot 5##

When I try to solve this I get ##a_1=0## which is clearly not possible. Can somebody explain me what am I doing wrong?
I also find ##a_1=0##.

Are you sure about the way you interpret the exercise?

Maybe it should be: "If ##d## is increased by 2, then ##S_n## is multiplied by 3", and similarly for the second one.
 
Sorry for the confusion. I've updated my problem statement. The first part of the problem is: "If the first member of the progression remains the same but ##d## increases by 2, then ##S_n## increases 3 times." Everything else is the same.

Now I got ##d=\frac{4}{3}##.
 
kaspis245 said:
Sorry for the confusion. I've updated my problem statement. The first part of the problem is: "If the first member of the progression remains the same but ##d## increases by 2, then ##S_n## increases 3 times." Everything else is the same.

Now I got ##d=\frac{4}{3}##.
So do I.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
4
Views
2K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
3
Views
2K