MHB [ASK] Equation of a Circle in the First Quadrant

  • Thread starter Thread starter Monoxdifly
  • Start date Start date
  • Tags Tags
    Circle
Monoxdifly
MHB
Messages
288
Reaction score
0
The center of circle L is located in the first quadrant and lays on the line y = 2x. If the circle L touches the Y-axis at (0,6), the equation of circle L is ...
a. $$x^2+y^2-3x-6y=0$$
b. $$x^2+y^2-12x-6y=0$$
c. $$x^2+y^2+6x+12y-108=0$$
d. $$x^2+y^2+12x+6y-72=0$$
e. $$x^2+y^2-6x-12y+36=0$$

Since the center (a, b) lays in the line y = 2x then b = 2a.
$$(x-a)^2+(y-b)^2=r^2$$
$$(0-a)^2+(6-b)^2=r^2$$
$$(-a)^2+(6-2a)^2=r^2$$
$$a^2+36-24a+4a^2=r^2$$
$$5a^2-24a+36=r^2$$
What should I do after this?
 
Mathematics news on Phys.org
circle center at $(x,2x)$

circle tangent to the y-axis at $(0,6) \implies x=3$

$(x-3)^2+(y-6)^2 = 3^2$

$x^2-6x+9+y^2-12y+36 =9$

$x^2+y^2-6x-12y+36=0$
 
skeeter said:
circle center at $(x,2x)$

circle tangent to the y-axis at $(0,6) \implies x=3$

How did you get x = 3 from (0, 6)?
 
Monoxdifly said:
How did you get x = 3 from (0, 6)?
The fact that the y-axis is tangent to the circle at (0, 6) means that the line y= 6 is a radius so the y coordinate of the center of the circle is 6. And since the center is at (x, 2x), y= 2x= 6 so x= 3.

(And the center of the circle "lies on the line y= 2x", not "lays".)
 
HallsofIvy said:
The fact that the y-axis is tangent to the circle at (0, 6) means that the line y= 6 is a radius so the y coordinate of the center of the circle is 6. And since the center is at (x, 2x), y= 2x= 6 so x= 3.

(And the center of the circle "lies on the line y= 2x", not "lays".)

Well, I admit I kinda suck at English. I usually use "lies" as "deceives" and "lays" as "is located". Thanks for the help, anyway. Your explanation is easy to understand.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
4
Views
1K
Replies
4
Views
2K
Replies
8
Views
2K
Replies
2
Views
1K
Replies
2
Views
2K
Replies
2
Views
1K
Replies
7
Views
3K
Back
Top