MHB [ASK] Find the ratio of the area of triangle BCH and triangle EHD

Click For Summary
The discussion focuses on finding the ratio of the areas of triangles BCH and EHD within a rhombus ABCD, where angles A and C are both 45°. It is established that triangles BCH and EHD are similar due to their corresponding angles. The area of triangle BCH is calculated using its base and height, while the area of triangle EHD is derived from its corresponding dimensions. The ratio of the areas simplifies to 1:2, indicating that the area of triangle BCH is half that of triangle EHD. This conclusion is reached through geometric relationships and properties of similar triangles.
Monoxdifly
MHB
Messages
288
Reaction score
0
A parallelogram ABCD has angle A = angle C = 45°. Circle K with the center C intercept the parallelogram through B and D. AD is extended so that it intercepts the circle at E and BE intercepts CD at H. The ratio of the area of triangle BCH and triangle EHD is ...

Here I got that triangle BCH and triangle EHD is similar with angle BCH = angle HDE = 45°, angle CHB = angle DHE = 112.5°, and angle CBH = angle DEH = 22.5°. The area of triangle BCH is ½ × CH × h, where h is the parallelogram's height. The area of triangle EHD is ½ × (r - CH) × r. I stuck at the ratio is (CH × h) : ((r - CH) × r). How do I simplify that? Problem is, I don't know CD's length, so I can't approximate the ratio between CH and DH.
 
Mathematics news on Phys.org
A parallelogram ABCD has angle A = angle C = 45°. Circle K with the center C intercept the parallelogram through B and D. AD is extended so that it intercepts the circle at E and BE intercepts CD at H. The ratio of the area of triangle BCH and triangle EHD is ...

Note parallelogram ABCD is a rhombus with side length $r$ ...

(area of BCH)/(area of EHD) = $\dfrac{r^2}{(r\sqrt{2})^2} = \dfrac{1}{2}$
 
How did you get area of BCH and area of EHD?
 
Monoxdifly said:
How did you get area of BCH and area of EHD?

I didn't get the areas ... I determined the ratio of their respective areas.

From the diagram, let triangle BCH have base r with a perpendicular height h. Since triangle EHD is similar, its corresponding base is r√2 with corresponding height h√2.

$\dfrac{\text{area of BCH}}{\text{area of EHD}} = \dfrac{\frac{1}{2}r \cdot h}{\frac{1}{2} r\sqrt{2} \cdot h\sqrt{2}}$

now ... simplify the right side of the above equation.
 
1 : 2
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 3 ·
Replies
3
Views
4K