MHB [ASK] Induction Determine the value of n if 1 + 3 + 6 + .... + n(n - 1)/2 = 364

  • Thread starter Thread starter Monoxdifly
  • Start date Start date
  • Tags Tags
    Induction Value
AI Thread Summary
The discussion focuses on determining the value of n in the equation 1 + 3 + 6 + ... + (1/2)n(n - 1) = 364. Participants clarify that the sum of the series can be expressed using the formula for the sum of squares, leading to the equation (2n^3 - 2n - 4368 = 0). After applying the rational roots theorem, they find that n = 13 is a solution. The quadratic factor resulting from synthetic division has a negative discriminant, confirming that n = 13 is the only real solution. The final conclusion is that the value of n is 13.
Monoxdifly
MHB
Messages
288
Reaction score
0
Determine the value of n if 1 + 3 + 6 + ... + $$\frac{1}{2}$$n(n - 1) = 364

What I did:
I know that 1, 3, and 6 are the result of arithmetic series with the starting value 1 and the difference 2, thus that sum can be written as S1 + S2 + S3 + ... + Sn = 364. However, by assuming that Sn = $$\frac{1}{2}$$n(n - 1) I got n + 1 = n - 1 which is simply unsolvable at all. After all, the term $$\frac{1}{2}$$n(n - 1) doesn't match for n = 1. Does this question even have any solution?
 
Mathematics news on Phys.org
I would write:

$$\frac{1}{2}\sum_{k=1}^n\left(k(k-1)\right)=364$$

$$\sum_{k=1}^n\left(k^2-k\right)=728$$

What are the formulas for:

$$\sum_{k=1}^n\left(k\right)$$

$$\sum_{k=1}^n\left(k^2\right)$$
 
MarkFL said:
What are the formulas for:

$$\sum_{k=1}^n\left(k\right)$$
$$\frac{1}{2}n(n-1)?$$

MarkFL said:
What are the formulas for:

$$\sum_{k=1}^n\left(k^2\right)$$
I don't know...
 
Monoxdifly said:
$$\frac{1}{2}n(n-1)?$$

Not quite, it is:

$$ \sum_{k=1}^n\left(k\right)=\frac{n(n+1)}{2}$$

Monoxdifly said:
I don't know...

Now for:

$$\sum_{k=1}^n\left(k^2\right)$$

The sum of squared terms is going to be a cubic function, so let's write:

$$\sum_{k=1}^n\left(k^2\right)=an^3+bn^2+cn+d$$

Now, consider, that we have:

$$\sum_{k=1}^n\left(k^2\right)=\sum_{k=0}^n\left(k^2\right)$$

$$\sum_{k=0}^1\left(k^2\right)=0^2=0$$

$$\sum_{k=1}^1\left(k^2\right)=0+1^2=1$$

$$\sum_{k=1}^2\left(k^2\right)=1+2^2=5$$

$$\sum_{k=1}^3\left(k^2\right)=5+3^2=14$$

So, this gives rise to the system:

$$d=0$$

$$a+b+c=1$$

$$8a+4b+2c=5$$

$$27a+9b+3c=14$$

I would use Gaussian elimination to solve this system:

$$\left[\begin{array}{ccc|c}1 & 1 & 1 & 1 \\ 8 & 4 & 2 & 5 \\ 27 & 9 & 3 & 14 \end{array}\right]$$

$$\left[\begin{array}{ccc|c}1 & 1 & 1 & 1 \\ 0 & -4 & -6 & -3 \\ 0 & -18 & -24 & -13 \end{array}\right]$$

$$\left[\begin{array}{ccc|c}1 & 1 & 1 & 1 \\ 0 & 1 & \frac{3}{2} & \frac{3}{4} \\ 0 & -18 & -24 & -13 \end{array}\right]$$

$$\left[\begin{array}{ccc|c}1 & 0 & -\frac{1}{2} & \frac{1}{4} \\ 0 & 1 & \frac{3}{2} & \frac{3}{4} \\ 0 & 0 & 3 & \frac{1}{2} \end{array}\right]$$

$$\left[\begin{array}{ccc|c}1 & 0 & -\frac{1}{2} & \frac{1}{4} \\ 0 & 1 & \frac{3}{2} & \frac{3}{4} \\ 0 & 0 & 1 & \frac{1}{6} \end{array}\right]$$

$$\left[\begin{array}{ccc|c}1 & 0 & 0 & \frac{1}{3} \\ 0 & 1 & 0 & \frac{1}{2} \\ 0 & 0 & 1 & \frac{1}{6} \end{array}\right]$$

This tells us:

$$(a,b,c,d)=\left(\frac{1}{3},\frac{1}{2},\frac{1}{6},0\right)$$

Hence:

$$\sum_{k=1}^n\left(k^2\right)=\frac{1}{3}n^3+\frac{1}{2}n^2+\frac{1}{6}n=\frac{2n^3+3n^2+n}{6}=\frac{n\left(2n^2+3n+1\right)}{6}=\frac{n(n+1)(2n+1)}{6}$$

Now, can you proceed with these formulas?
 
Monoxdifly said:
Determine the value of n if 1 + 3 + 6 + ... + $$\frac{1}{2}$$n(n - 1) = 364

What I did:
I know that 1, 3, and 6 are the result of arithmetic series with the starting value 1 and the difference 2, thus that sum can be written as S1 + S2 + S3 + ... + Sn = 364. However, by assuming that Sn = $$\frac{1}{2}$$n(n - 1) I got n + 1 = n - 1 which is simply unsolvable at all. After all, the term $$\frac{1}{2}$$n(n - 1) doesn't match for n = 1. Does this question even have any solution?
I think you maybe confusing two things here. If you say the sum can be written as $S_{1}+S_{2}+\cdots+S_{n} = 364$, then $S_n$ is the $n^{th}$ term of the sequence which, as you say, is $\frac{1}{2} n(n-1)$. This is different from the sum. The question is asking you to find $n$ if the sum $S_{1}+S_{2}+\cdots+S_{n}$ evaluates to $364$. Maybe the choice of naming the terms $S_1, S_2, \ldots, S_n$ is a cause for confusion as you might be used to denoting the value of the sum as $S_n$, in which case perhaps naming them $T_1, T_2, \ldots, T_n$ might be better.
 
Last edited:
To follow up, we have:

$$\sum_{k=1}^n\left(k^2-k\right)=728$$

Using our summation formulas, we get:

$$\frac{2n^3+3n^2+n}{6}-\frac{n^2+n}{2}=728$$

Multiply through by 6:

$$2n^3+3n^2+n-3n^2-3n=4368$$

Arrange in standard form:

$$2n^3-2n-4368=0$$

Divide through by 2:

$$n^3-n-2184=0$$

Let:

$$f(n)=n^3-n-2184$$

Trying the factors of 2184 in according with the rational roots theorem, we find:

$$f(13)=0$$

Then, using synthetic division, we obtain:

$$\begin{array}{c|rr}& 1 & 0 & -1 & -2184 \\ 13 & & 13 & 169 & 2184 \\ \hline & 1 & 13 & 168 & 0 \end{array}$$

This tells us:

$$f(n)=(n-13)\left(n^2+13n+168\right)$$

We see that the discriminant of the quadratic factor is negative, leaving only:

$$n=13$$
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top