[ASK] Induction Determine the value of n if 1 + 3 + 6 + .... + n(n - 1)/2 = 364

  • Context: MHB 
  • Thread starter Thread starter Monoxdifly
  • Start date Start date
  • Tags Tags
    Induction Value
Click For Summary
SUMMARY

The discussion focuses on determining the value of n in the equation 1 + 3 + 6 + ... + $$\frac{1}{2}$$n(n - 1) = 364. The participants clarify that the sum of the first n terms can be expressed as $$\sum_{k=1}^n\left(k^2-k\right)=728$$. By applying summation formulas, they derive the polynomial equation $$n^3-n-2184=0$$. The solution to this equation reveals that n equals 13, confirmed through synthetic division and the rational roots theorem.

PREREQUISITES
  • Understanding of arithmetic series and their properties
  • Familiarity with polynomial equations and the rational roots theorem
  • Knowledge of summation formulas for sequences, specifically $$\sum_{k=1}^n\left(k\right)$$ and $$\sum_{k=1}^n\left(k^2\right)$$
  • Experience with synthetic division and solving cubic equations
NEXT STEPS
  • Study the derivation of the summation formula $$\sum_{k=1}^n\left(k^2\right)=\frac{n(n+1)(2n+1)}{6}$$
  • Learn about synthetic division techniques for polynomial equations
  • Explore the rational roots theorem and its application in finding polynomial roots
  • Investigate further into cubic equations and their solutions
USEFUL FOR

Mathematicians, educators, and students engaged in algebra, particularly those focusing on series, sequences, and polynomial equations.

Monoxdifly
MHB
Messages
288
Reaction score
0
Determine the value of n if 1 + 3 + 6 + ... + $$\frac{1}{2}$$n(n - 1) = 364

What I did:
I know that 1, 3, and 6 are the result of arithmetic series with the starting value 1 and the difference 2, thus that sum can be written as S1 + S2 + S3 + ... + Sn = 364. However, by assuming that Sn = $$\frac{1}{2}$$n(n - 1) I got n + 1 = n - 1 which is simply unsolvable at all. After all, the term $$\frac{1}{2}$$n(n - 1) doesn't match for n = 1. Does this question even have any solution?
 
Mathematics news on Phys.org
I would write:

$$\frac{1}{2}\sum_{k=1}^n\left(k(k-1)\right)=364$$

$$\sum_{k=1}^n\left(k^2-k\right)=728$$

What are the formulas for:

$$\sum_{k=1}^n\left(k\right)$$

$$\sum_{k=1}^n\left(k^2\right)$$
 
MarkFL said:
What are the formulas for:

$$\sum_{k=1}^n\left(k\right)$$
$$\frac{1}{2}n(n-1)?$$

MarkFL said:
What are the formulas for:

$$\sum_{k=1}^n\left(k^2\right)$$
I don't know...
 
Monoxdifly said:
$$\frac{1}{2}n(n-1)?$$

Not quite, it is:

$$ \sum_{k=1}^n\left(k\right)=\frac{n(n+1)}{2}$$

Monoxdifly said:
I don't know...

Now for:

$$\sum_{k=1}^n\left(k^2\right)$$

The sum of squared terms is going to be a cubic function, so let's write:

$$\sum_{k=1}^n\left(k^2\right)=an^3+bn^2+cn+d$$

Now, consider, that we have:

$$\sum_{k=1}^n\left(k^2\right)=\sum_{k=0}^n\left(k^2\right)$$

$$\sum_{k=0}^1\left(k^2\right)=0^2=0$$

$$\sum_{k=1}^1\left(k^2\right)=0+1^2=1$$

$$\sum_{k=1}^2\left(k^2\right)=1+2^2=5$$

$$\sum_{k=1}^3\left(k^2\right)=5+3^2=14$$

So, this gives rise to the system:

$$d=0$$

$$a+b+c=1$$

$$8a+4b+2c=5$$

$$27a+9b+3c=14$$

I would use Gaussian elimination to solve this system:

$$\left[\begin{array}{ccc|c}1 & 1 & 1 & 1 \\ 8 & 4 & 2 & 5 \\ 27 & 9 & 3 & 14 \end{array}\right]$$

$$\left[\begin{array}{ccc|c}1 & 1 & 1 & 1 \\ 0 & -4 & -6 & -3 \\ 0 & -18 & -24 & -13 \end{array}\right]$$

$$\left[\begin{array}{ccc|c}1 & 1 & 1 & 1 \\ 0 & 1 & \frac{3}{2} & \frac{3}{4} \\ 0 & -18 & -24 & -13 \end{array}\right]$$

$$\left[\begin{array}{ccc|c}1 & 0 & -\frac{1}{2} & \frac{1}{4} \\ 0 & 1 & \frac{3}{2} & \frac{3}{4} \\ 0 & 0 & 3 & \frac{1}{2} \end{array}\right]$$

$$\left[\begin{array}{ccc|c}1 & 0 & -\frac{1}{2} & \frac{1}{4} \\ 0 & 1 & \frac{3}{2} & \frac{3}{4} \\ 0 & 0 & 1 & \frac{1}{6} \end{array}\right]$$

$$\left[\begin{array}{ccc|c}1 & 0 & 0 & \frac{1}{3} \\ 0 & 1 & 0 & \frac{1}{2} \\ 0 & 0 & 1 & \frac{1}{6} \end{array}\right]$$

This tells us:

$$(a,b,c,d)=\left(\frac{1}{3},\frac{1}{2},\frac{1}{6},0\right)$$

Hence:

$$\sum_{k=1}^n\left(k^2\right)=\frac{1}{3}n^3+\frac{1}{2}n^2+\frac{1}{6}n=\frac{2n^3+3n^2+n}{6}=\frac{n\left(2n^2+3n+1\right)}{6}=\frac{n(n+1)(2n+1)}{6}$$

Now, can you proceed with these formulas?
 
Monoxdifly said:
Determine the value of n if 1 + 3 + 6 + ... + $$\frac{1}{2}$$n(n - 1) = 364

What I did:
I know that 1, 3, and 6 are the result of arithmetic series with the starting value 1 and the difference 2, thus that sum can be written as S1 + S2 + S3 + ... + Sn = 364. However, by assuming that Sn = $$\frac{1}{2}$$n(n - 1) I got n + 1 = n - 1 which is simply unsolvable at all. After all, the term $$\frac{1}{2}$$n(n - 1) doesn't match for n = 1. Does this question even have any solution?
I think you maybe confusing two things here. If you say the sum can be written as $S_{1}+S_{2}+\cdots+S_{n} = 364$, then $S_n$ is the $n^{th}$ term of the sequence which, as you say, is $\frac{1}{2} n(n-1)$. This is different from the sum. The question is asking you to find $n$ if the sum $S_{1}+S_{2}+\cdots+S_{n}$ evaluates to $364$. Maybe the choice of naming the terms $S_1, S_2, \ldots, S_n$ is a cause for confusion as you might be used to denoting the value of the sum as $S_n$, in which case perhaps naming them $T_1, T_2, \ldots, T_n$ might be better.
 
Last edited:
To follow up, we have:

$$\sum_{k=1}^n\left(k^2-k\right)=728$$

Using our summation formulas, we get:

$$\frac{2n^3+3n^2+n}{6}-\frac{n^2+n}{2}=728$$

Multiply through by 6:

$$2n^3+3n^2+n-3n^2-3n=4368$$

Arrange in standard form:

$$2n^3-2n-4368=0$$

Divide through by 2:

$$n^3-n-2184=0$$

Let:

$$f(n)=n^3-n-2184$$

Trying the factors of 2184 in according with the rational roots theorem, we find:

$$f(13)=0$$

Then, using synthetic division, we obtain:

$$\begin{array}{c|rr}& 1 & 0 & -1 & -2184 \\ 13 & & 13 & 169 & 2184 \\ \hline & 1 & 13 & 168 & 0 \end{array}$$

This tells us:

$$f(n)=(n-13)\left(n^2+13n+168\right)$$

We see that the discriminant of the quadratic factor is negative, leaving only:

$$n=13$$
 

Similar threads

  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K