B Asking about integral notation

  • B
  • Thread starter Thread starter songoku
  • Start date Start date
  • Tags Tags
    Integral Notation
AI Thread Summary
The integral notation ##\int_{a}^{x} f(t) dt## is preferred because it avoids confusion by using a different variable, t, for integration limits. Writing it as ##\int_{a}^{x} f(x) dx## implies that the variable of integration is the same as the upper limit, which can lead to misunderstandings. The notation emphasizes that t is a dummy variable, distinct from x, which is crucial for clarity in calculus. Additionally, the expression ##F(x) = \int f(x) dx## is valid, but it should not be conflated with the definite integral that has specific limits. Proper notation is essential for accurate mathematical communication.
songoku
Messages
2,469
Reaction score
382
TL;DR Summary
Why writing $$\int_{a}^{x} f(x) dx$$ is not correct?
Why should it be ##\int_{a}^{x} f(t)dt## ?

Couldn't it be like this:
Let F(x) = ##\int f(x)dx## so ##\int_{a}^{x} f(x)dx## = F(x) - F(a)

Thanks
 
Mathematics news on Phys.org
songoku said:
Summary: Why writing $$\int_{a}^{x} f(x) dx$$ is not correct?

Why should it be ##\int_{a}^{x} f(t)dt## ?

Couldn't it be like this:
Let F(x) = ##\int f(x)dx## so ##\int_{a}^{x} f(x)dx## = F(x) - F(a)

Thanks
The integral ##\displaystyle{\int_a^b f(t)\,dt}## is short for ##\displaystyle{\int_{t=a}^{t=b} f(t)\,dt}.## If you use the same letter (##b=t##) for two different meanings then you cause confusion.
 
  • Like
  • Informative
Likes songoku, dextercioby, mcastillo356 and 1 other person
songoku said:
Summary: Why writing $$\int_{a}^{x} f(x) dx$$ is not correct?

Why should it be ##\int_{a}^{x} f(t)dt## ?

Couldn't it be like this:
Let F(x) = ##\int f(x)dx## so ##\int_{a}^{x} f(x)dx## = F(x) - F(a)

Thanks
Why is it not correct to write $$\sum_{k = 1}^k a_k$$
 
  • Like
Likes topsquark and songoku
Thank you very much for the explanation fresh_42 and PeroK
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Replies
1
Views
1K
Replies
5
Views
2K
Replies
12
Views
2K
Replies
6
Views
1K
Replies
22
Views
3K
Replies
7
Views
1K
Back
Top