- #1

Steve Zissou

- 51

- 0

- TL;DR Summary
- wondering if integrand terms can be cancelled

Howdy all,

Let's say we have, in general an expression:

$$ \int f(x) g(x) dx $$

But in through some machinations, we have, for parameter ##a##,

$$ \int f(x) g(x) dx = \int f(x) g(a) dx $$

...can we conclude that ## g(x) = g(a) ## ????

Thanks

Let's say we have, in general an expression:

$$ \int f(x) g(x) dx $$

But in through some machinations, we have, for parameter ##a##,

$$ \int f(x) g(x) dx = \int f(x) g(a) dx $$

...can we conclude that ## g(x) = g(a) ## ????

Thanks