I don't understand how we're counting the "number of measurements". The claim that (for a particular setting of the three detectors), the product of the spin results is guaranteed to be a certain value can be falsified by a single experiment. But the claim that the measurement results are due to hidden variables cannot be falsified by a single experiment. So it seems to me incorrect to say that a single measurement, or even 4 measurements, can disprove local hidden variables.
[added]
In the GHZ experiment, you have the predictions of QM. You can prove, without doing any experiments at all, that these predictions are inconsistent with a local hidden variable theory. But that still leaves two possibilities open:
- QM is wrong.
- Local hidden variables is wrong.
In case 1, a single measurement could show it. In case 2, it seems that it can only be shown statistically. Which is the same situation as the usual EPR paradox. In both cases, disproving QM can be done with a single measurement, but disproving local hidden variables requires many measurements.