High School Asymptotic Function: Definition & Integration

  • Thread starter Thread starter Debaa
  • Start date Start date
  • Tags Tags
    Function
Click For Summary
An asymptotic function f behaves similarly to another function g in a small neighborhood. The Taylor expansion can approximate g but isn't always practical. Big-O notation is used to describe the upper bounds of f in relation to g, specifically when f(n) = O(g(n)). Additionally, f is classified as o(g(n)) if it is dominated by g for large n, and as Θ(g(n)) if g accurately characterizes f as both an upper and lower bound. Understanding these concepts is crucial for analyzing the behavior of functions in mathematics.
Debaa
Messages
22
Reaction score
0
What is an asymptotic function. How do you integrate it?
 
Physics news on Phys.org
An asymptotic function ##f## is a function that has the same behaviour of another function ##g##, at least in a small neighborhood ...
For example the Taylor expansion gives you a polynomial that has the same behaviour of ##g##. The Taylor expansion is not always practicable. In mathematics there is a notation used in the asymptotic expansion called ''big-##O##'' notation.
For discrete functions ##f(n)=O(g(n))## if ##g## is an upper bound on ## f ##: there exists a fixed constant ##c## and a fixed ##n_{0}## such that for all ##n≥n_{0}##,

##f(n) ≤ cg(n)##.

We say ##f## is ##o(g(n))## (read: "##f## is little-##o## of ##g##'') if for all arbitrarily small real ##c > 0##, for all but perhaps finitely many ##n##,

##f(n) ≤ cg(n)##.

We say that f is ##\Theta(g(n))## (read: "##f## is theta of ##g##") if ##g## is an accurate characterization of ##f## for large ##n##: it can be scaled so it is both an upper and a lower bound of ##f##.

Details of Taylor expansion, ##O##-notation, or asymptotic analysis are in https://en.wikipedia.org/wiki/Taylor_series , https://en.wikipedia.org/wiki/Big_O_notation , https://en.wikipedia.org/wiki/Asymptotic_analysis

Ssnow
 
Ssnow said:
An asymptotic function ##f## is a function that has the same behaviour of another function ##g##, at least in a small neighborhood ...
For example the Taylor expansion gives you a polynomial that has the same behaviour of ##g##. The Taylor expansion is not always practicable. In mathematics there is a notation used in the asymptotic expansion called ''big-##O##'' notation.
For discrete functions ##f(n)=O(g(n))## if ##g## is an upper bound on ## f ##: there exists a fixed constant ##c## and a fixed ##n_{0}## such that for all ##n≥n_{0}##,

##f(n) ≤ cg(n)##.

We say ##f## is ##o(g(n))## (read: "##f## is little-##o## of ##g##'') if for all arbitrarily small real ##c > 0##, for all but perhaps finitely many ##n##,

##f(n) ≤ cg(n)##.

We say that f is ##\Theta(g(n))## (read: "##f## is theta of ##g##") if ##g## is an accurate characterization of ##f## for large ##n##: it can be scaled so it is both an upper and a lower bound of ##f##.

Details of Taylor expansion, ##O##-notation, or asymptotic analysis are in https://en.wikipedia.org/wiki/Taylor_series , https://en.wikipedia.org/wiki/Big_O_notation , https://en.wikipedia.org/wiki/Asymptotic_analysis

Ssnow
Thanks
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
5
Views
1K
  • · Replies 31 ·
2
Replies
31
Views
4K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K