MHB At which p-adic fields does the equation have no rational solution?

  • Thread starter Thread starter evinda
  • Start date Start date
  • Tags Tags
    Fields Rational
AI Thread Summary
The equation $3x^2 + 5y^2 - 7z^2 = 0$ has been shown to lack non-trivial solutions in $\mathbb{Q}$, particularly verified through the case of $p=3$. To determine at which p-adic fields it has no rational solution, the Hilbert symbol $\left( \frac{3}{7}, \frac{5}{7} \right)_p$ must be computed for various primes. The discussion emphasizes the importance of checking primes $p=3, 5, 7, \infty$ for potential solutions. Concerns were raised regarding the understanding of the Hilbert symbol and alternative methods for larger primes.
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Wave)I have to check if the equation $3x^2+5y^2-7z^2=0$ has a non-trivial solution in $\mathbb{Q}$. If it has, I have to find at least one. If it doesn't have, I have to find at which p-adic fields it has no rational solution.Theorem:

We suppose that $a,b,c \in \mathbb{Z}, (a,b)=(b,c)=(a,c)=1$.

$abc$ is square-free. Then, the equation $ax^2+by^2+cz^2=0$ has a non-trivial solution in $\mathbb{Q} \Leftrightarrow$



  1. $a,b,c$ do not have the same sign.
  2. $\forall p \in \mathbb{P} \setminus \{ 2 \}, p \mid a$, $\exists r \in \mathbb{Z}$ such that $b+r^2c \equiv 0 \pmod p$ and similar congruence for the primes $p \in \mathbb{P} \setminus \{ 2 \}$, for which $p \mid b$ or $p \mid c$.
  3. If $a,b,c$ are all odd, then there are two of $a,b,c$, so that their sum is divided by $4$.
  4. If $a$ even, then $b+c$ or $a+b+c$ is divisible by $8$.
    Similar, if $b$ or $c$ even.

The first sentence is satisfied.

For the second one:

$$p=3:$$

$$5+x^2(-7) \equiv 0 \pmod 3 \Rightarrow x^2 \equiv 2 \mod 3$$
$$\left ( \frac{2}{3} \right)=-1$$So, we see that the equation hasn't non-trivial solutions in $\mathbb{Q}$.

But.. how can we check at which p-adic fields the equation has no rational solution?
 
Mathematics news on Phys.org
Divide out and write,
$$ \tfrac{3}{7}x^2 + \tfrac{5}{7}y^2 - z^2 = 0 $$
If there is a non-trivial solution in $\mathbb{Q}_p$ it means that the Hilbert symbol, $\left( \tfrac{3}{7},\tfrac{5}{7}\right)_p = 1$. Now you need to compute the Hilbert symbol for various primes $p$.

Now the Hilbert symbol can be multiplied through by a square without changing it. So we can clear denominators by multiplying through by $7^2$ and get $(21,35)_p=1$. Really the only primes you need to check are $p=3,5,7,\infty$. Do you understand why?
 
ThePerfectHacker said:
Divide out and write,
$$ \tfrac{3}{7}x^2 + \tfrac{5}{7}y^2 - z^2 = 0 $$
If there is a non-trivial solution in $\mathbb{Q}_p$ it means that the Hilbert symbol, $\left( \tfrac{3}{7},\tfrac{5}{7}\right)_p = 1$. Now you need to compute the Hilbert symbol for various primes $p$.

Now the Hilbert symbol can be multiplied through by a square without changing it. So we can clear denominators by multiplying through by $7^2$ and get $(21,35)_p=1$. Really the only primes you need to check are $p=3,5,7,\infty$. Do you understand why?

I haven't get taught the Hilbert symbol. (Worried) How else could we do this? (Thinking)
 
For $p=2,3,5,7$, we can write the congruence modulo $p$ and we can see if there is a solution or not.

But, what can we do for $p>7$ ? (Thinking)
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Replies
1
Views
2K
Replies
1
Views
2K
Replies
3
Views
2K
Replies
1
Views
2K
Replies
7
Views
2K
Replies
4
Views
2K
Replies
4
Views
1K
Back
Top