MHB At which p-adic fields does the equation have no rational solution?

  • Thread starter Thread starter evinda
  • Start date Start date
  • Tags Tags
    Fields Rational
Click For Summary
The equation $3x^2 + 5y^2 - 7z^2 = 0$ has been shown to lack non-trivial solutions in $\mathbb{Q}$, particularly verified through the case of $p=3$. To determine at which p-adic fields it has no rational solution, the Hilbert symbol $\left( \frac{3}{7}, \frac{5}{7} \right)_p$ must be computed for various primes. The discussion emphasizes the importance of checking primes $p=3, 5, 7, \infty$ for potential solutions. Concerns were raised regarding the understanding of the Hilbert symbol and alternative methods for larger primes.
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Wave)I have to check if the equation $3x^2+5y^2-7z^2=0$ has a non-trivial solution in $\mathbb{Q}$. If it has, I have to find at least one. If it doesn't have, I have to find at which p-adic fields it has no rational solution.Theorem:

We suppose that $a,b,c \in \mathbb{Z}, (a,b)=(b,c)=(a,c)=1$.

$abc$ is square-free. Then, the equation $ax^2+by^2+cz^2=0$ has a non-trivial solution in $\mathbb{Q} \Leftrightarrow$



  1. $a,b,c$ do not have the same sign.
  2. $\forall p \in \mathbb{P} \setminus \{ 2 \}, p \mid a$, $\exists r \in \mathbb{Z}$ such that $b+r^2c \equiv 0 \pmod p$ and similar congruence for the primes $p \in \mathbb{P} \setminus \{ 2 \}$, for which $p \mid b$ or $p \mid c$.
  3. If $a,b,c$ are all odd, then there are two of $a,b,c$, so that their sum is divided by $4$.
  4. If $a$ even, then $b+c$ or $a+b+c$ is divisible by $8$.
    Similar, if $b$ or $c$ even.

The first sentence is satisfied.

For the second one:

$$p=3:$$

$$5+x^2(-7) \equiv 0 \pmod 3 \Rightarrow x^2 \equiv 2 \mod 3$$
$$\left ( \frac{2}{3} \right)=-1$$So, we see that the equation hasn't non-trivial solutions in $\mathbb{Q}$.

But.. how can we check at which p-adic fields the equation has no rational solution?
 
Mathematics news on Phys.org
Divide out and write,
$$ \tfrac{3}{7}x^2 + \tfrac{5}{7}y^2 - z^2 = 0 $$
If there is a non-trivial solution in $\mathbb{Q}_p$ it means that the Hilbert symbol, $\left( \tfrac{3}{7},\tfrac{5}{7}\right)_p = 1$. Now you need to compute the Hilbert symbol for various primes $p$.

Now the Hilbert symbol can be multiplied through by a square without changing it. So we can clear denominators by multiplying through by $7^2$ and get $(21,35)_p=1$. Really the only primes you need to check are $p=3,5,7,\infty$. Do you understand why?
 
ThePerfectHacker said:
Divide out and write,
$$ \tfrac{3}{7}x^2 + \tfrac{5}{7}y^2 - z^2 = 0 $$
If there is a non-trivial solution in $\mathbb{Q}_p$ it means that the Hilbert symbol, $\left( \tfrac{3}{7},\tfrac{5}{7}\right)_p = 1$. Now you need to compute the Hilbert symbol for various primes $p$.

Now the Hilbert symbol can be multiplied through by a square without changing it. So we can clear denominators by multiplying through by $7^2$ and get $(21,35)_p=1$. Really the only primes you need to check are $p=3,5,7,\infty$. Do you understand why?

I haven't get taught the Hilbert symbol. (Worried) How else could we do this? (Thinking)
 
For $p=2,3,5,7$, we can write the congruence modulo $p$ and we can see if there is a solution or not.

But, what can we do for $p>7$ ? (Thinking)
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 26 ·
Replies
26
Views
5K
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K