MHB At which p-adic fields does the equation have no rational solution?

  • Thread starter Thread starter evinda
  • Start date Start date
  • Tags Tags
    Fields Rational
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Wave)I have to check if the equation $3x^2+5y^2-7z^2=0$ has a non-trivial solution in $\mathbb{Q}$. If it has, I have to find at least one. If it doesn't have, I have to find at which p-adic fields it has no rational solution.Theorem:

We suppose that $a,b,c \in \mathbb{Z}, (a,b)=(b,c)=(a,c)=1$.

$abc$ is square-free. Then, the equation $ax^2+by^2+cz^2=0$ has a non-trivial solution in $\mathbb{Q} \Leftrightarrow$



  1. $a,b,c$ do not have the same sign.
  2. $\forall p \in \mathbb{P} \setminus \{ 2 \}, p \mid a$, $\exists r \in \mathbb{Z}$ such that $b+r^2c \equiv 0 \pmod p$ and similar congruence for the primes $p \in \mathbb{P} \setminus \{ 2 \}$, for which $p \mid b$ or $p \mid c$.
  3. If $a,b,c$ are all odd, then there are two of $a,b,c$, so that their sum is divided by $4$.
  4. If $a$ even, then $b+c$ or $a+b+c$ is divisible by $8$.
    Similar, if $b$ or $c$ even.

The first sentence is satisfied.

For the second one:

$$p=3:$$

$$5+x^2(-7) \equiv 0 \pmod 3 \Rightarrow x^2 \equiv 2 \mod 3$$
$$\left ( \frac{2}{3} \right)=-1$$So, we see that the equation hasn't non-trivial solutions in $\mathbb{Q}$.

But.. how can we check at which p-adic fields the equation has no rational solution?
 
Mathematics news on Phys.org
Divide out and write,
$$ \tfrac{3}{7}x^2 + \tfrac{5}{7}y^2 - z^2 = 0 $$
If there is a non-trivial solution in $\mathbb{Q}_p$ it means that the Hilbert symbol, $\left( \tfrac{3}{7},\tfrac{5}{7}\right)_p = 1$. Now you need to compute the Hilbert symbol for various primes $p$.

Now the Hilbert symbol can be multiplied through by a square without changing it. So we can clear denominators by multiplying through by $7^2$ and get $(21,35)_p=1$. Really the only primes you need to check are $p=3,5,7,\infty$. Do you understand why?
 
ThePerfectHacker said:
Divide out and write,
$$ \tfrac{3}{7}x^2 + \tfrac{5}{7}y^2 - z^2 = 0 $$
If there is a non-trivial solution in $\mathbb{Q}_p$ it means that the Hilbert symbol, $\left( \tfrac{3}{7},\tfrac{5}{7}\right)_p = 1$. Now you need to compute the Hilbert symbol for various primes $p$.

Now the Hilbert symbol can be multiplied through by a square without changing it. So we can clear denominators by multiplying through by $7^2$ and get $(21,35)_p=1$. Really the only primes you need to check are $p=3,5,7,\infty$. Do you understand why?

I haven't get taught the Hilbert symbol. (Worried) How else could we do this? (Thinking)
 
For $p=2,3,5,7$, we can write the congruence modulo $p$ and we can see if there is a solution or not.

But, what can we do for $p>7$ ? (Thinking)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
1
Views
2K
Replies
1
Views
2K
Replies
3
Views
2K
Replies
1
Views
2K
Replies
7
Views
2K
Replies
4
Views
2K
Replies
4
Views
1K
Back
Top