I Average Magnetic Field Between 2 Conducting Rods

AI Thread Summary
The discussion focuses on calculating the average magnetic field between two conducting copper rods for a railgun project. The formula provided for the magnetic field at a point between the rods involves parameters such as current and distance from the rods. The user seeks assistance in deriving an expression for the average magnetic field across the gap, acknowledging the need for integration. A solution is suggested that incorporates the finite radius of the wires to avoid issues as the distance approaches zero. Understanding the derivation and application of this average magnetic field formula is essential for the project.
Gbl911
Messages
18
Reaction score
0
I am building small, simple version of a railgun using 2 copper bars and a couple of neodymium magnets to increase the magnetic field. I have also been trying to mathematically describe the magnetic field created by the conducting rods themselves. I am coming across some trouble when trying to derive an expression for the average magnetic field across the entire gap and would like some help.

You can write the magnetic field at anyone point in between the two bars as

(u*I)/(2*pi) * (1/r + 1/(d-r))
where u is mu, d is distance between the bars, I is the current, and r is the distance from the center of one bar to the point of interest.
I assume that I need to compute some form of integral but I'm not sure exactly what to integrate over and how to obtain the average field strength from that.
I found a website that details how they went about it but I still am not sure on why the way they did it works. Here is the link.
https://military-history.fandom.com/wiki/Railgun
 
Physics news on Phys.org
You will notice that there is a problem as ## r \rightarrow 0 ##. So you need to take the finite radius of your wires into account.
If you do that the average is ## B_{avg} = ~(2\int_a^{d-a} \mu_0 I/2\pi r~ dr)/(d-2a) ## where ## a ## is the wire radius.
Not sure why you want this but there you go.
 
Thread 'Griffith, Electrodynamics, 4th Edition, Example 4.8. (Second part)'
I am reading the Griffith, Electrodynamics book, 4th edition, Example 4.8. I want to understand some issues more correctly. It's a little bit difficult to understand now. > Example 4.8. Suppose the entire region below the plane ##z=0## in Fig. 4.28 is filled with uniform linear dielectric material of susceptibility ##\chi_e##. Calculate the force on a point charge ##q## situated a distance ##d## above the origin. In the page 196, in the first paragraph, the author argues as follows ...
Thread 'Inducing EMF Through a Coil: Understanding Flux'
Thank you for reading my post. I can understand why a change in magnetic flux through a conducting surface would induce an emf, but how does this work when inducing an emf through a coil? How does the flux through the empty space between the wires have an effect on the electrons in the wire itself? In the image below is a coil with a magnetic field going through the space between the wires but not necessarily through the wires themselves. Thank you.
Back
Top