Milsomonk
- 100
- 17
Hi all,
I am looking for clarification on what is probably a pretty basic change of variables between a few lines in the following paper:
https://journals.aps.org/prd/pdf/10.1103/PhysRevD.34.1326
Equation (9) shows the differential cross section for a Bremsstrahlung process which creates an axion instead of a photon, the cross section is expressed as a differential in ##x## where ##x=E_a/E_e##, the ratio of the emitted axion energy to initial electron energy. Between Equation (8) and (9) a change of variables takes place such that ##\frac{d\sigma}{d E_a} \rightarrow \frac{d\sigma}{d x}##. What is the correct process to reverse this change of variable so that I have the cross section expressed as differential in axion energy ##E_a##? I infer that the author must have done the following substitution (I express the particular algebraic form of the cross section as ##f## for brevity):
$$ \frac{d\sigma}{d E_a} = f(E_a/E_e) = f(x)$$
$$\frac{d\sigma}{d x} = \frac{d\sigma}{d E_a}\cdot \frac{dE_a}{dx} = f(x)* E_e$$
If this is correct, then to reverse the change of variables we have:
$$\frac{d\sigma}{d E_a} = \frac{d\sigma}{d x}*\frac{dx}{dE_a}=f(E_a/E_e)\frac{1}{E_e}$$
Or have I missed something?
I am looking for clarification on what is probably a pretty basic change of variables between a few lines in the following paper:
https://journals.aps.org/prd/pdf/10.1103/PhysRevD.34.1326
Equation (9) shows the differential cross section for a Bremsstrahlung process which creates an axion instead of a photon, the cross section is expressed as a differential in ##x## where ##x=E_a/E_e##, the ratio of the emitted axion energy to initial electron energy. Between Equation (8) and (9) a change of variables takes place such that ##\frac{d\sigma}{d E_a} \rightarrow \frac{d\sigma}{d x}##. What is the correct process to reverse this change of variable so that I have the cross section expressed as differential in axion energy ##E_a##? I infer that the author must have done the following substitution (I express the particular algebraic form of the cross section as ##f## for brevity):
$$ \frac{d\sigma}{d E_a} = f(E_a/E_e) = f(x)$$
$$\frac{d\sigma}{d x} = \frac{d\sigma}{d E_a}\cdot \frac{dE_a}{dx} = f(x)* E_e$$
If this is correct, then to reverse the change of variables we have:
$$\frac{d\sigma}{d E_a} = \frac{d\sigma}{d x}*\frac{dx}{dE_a}=f(E_a/E_e)\frac{1}{E_e}$$
Or have I missed something?
Last edited: