Undergrad Axion production via Bremsstrahlung - Simple maths question

Click For Summary
The discussion centers on a clarification regarding the change of variables in the differential cross section for axion production via Bremsstrahlung, as presented in a specific paper. The user seeks to understand how to revert from the differential in the variable x (the ratio of emitted axion energy to initial electron energy) back to the differential in axion energy (E_a). They propose a substitution method for this reverse transformation but express uncertainty about whether their approach is correct. The user contemplates the potential missing factor of E_e in their calculations, indicating a possible circular reasoning in their derivation. The conversation emphasizes the intricacies of mathematical transformations in particle physics.
Milsomonk
Messages
100
Reaction score
17
Hi all,
I am looking for clarification on what is probably a pretty basic change of variables between a few lines in the following paper:

https://journals.aps.org/prd/pdf/10.1103/PhysRevD.34.1326

Equation (9) shows the differential cross section for a Bremsstrahlung process which creates an axion instead of a photon, the cross section is expressed as a differential in ##x## where ##x=E_a/E_e##, the ratio of the emitted axion energy to initial electron energy. Between Equation (8) and (9) a change of variables takes place such that ##\frac{d\sigma}{d E_a} \rightarrow \frac{d\sigma}{d x}##. What is the correct process to reverse this change of variable so that I have the cross section expressed as differential in axion energy ##E_a##? I infer that the author must have done the following substitution (I express the particular algebraic form of the cross section as ##f## for brevity):

$$ \frac{d\sigma}{d E_a} = f(E_a/E_e) = f(x)$$
$$\frac{d\sigma}{d x} = \frac{d\sigma}{d E_a}\cdot \frac{dE_a}{dx} = f(x)* E_e$$

If this is correct, then to reverse the change of variables we have:

$$\frac{d\sigma}{d E_a} = \frac{d\sigma}{d x}*\frac{dx}{dE_a}=f(E_a/E_e)\frac{1}{E_e}$$

Or have I missed something?
 
Last edited:
Physics news on Phys.org
It should be instead of ##f(E_a/E_c)##, ##f(x)*E_c##; so you are missing a factor of ##E_c## , but this of course is circular and you are back with what you started with. :cool:
 
Last edited by a moderator:
This is an alert about a claim regarding the standard model, that got a burst of attention in the past two weeks. The original paper came out last year: "The electroweak η_W meson" by Gia Dvali, Archil Kobakhidze, Otari Sakhelashvili (2024) The recent follow-up and other responses are "η_W-meson from topological properties of the electroweak vacuum" by Dvali et al "Hiding in Plain Sight, the electroweak η_W" by Giacomo Cacciapaglia, Francesco Sannino, Jessica Turner "Astrophysical...

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
Replies
1
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K