I Axion production via Bremsstrahlung - Simple maths question

Milsomonk
Messages
100
Reaction score
17
Hi all,
I am looking for clarification on what is probably a pretty basic change of variables between a few lines in the following paper:

https://journals.aps.org/prd/pdf/10.1103/PhysRevD.34.1326

Equation (9) shows the differential cross section for a Bremsstrahlung process which creates an axion instead of a photon, the cross section is expressed as a differential in ##x## where ##x=E_a/E_e##, the ratio of the emitted axion energy to initial electron energy. Between Equation (8) and (9) a change of variables takes place such that ##\frac{d\sigma}{d E_a} \rightarrow \frac{d\sigma}{d x}##. What is the correct process to reverse this change of variable so that I have the cross section expressed as differential in axion energy ##E_a##? I infer that the author must have done the following substitution (I express the particular algebraic form of the cross section as ##f## for brevity):

$$ \frac{d\sigma}{d E_a} = f(E_a/E_e) = f(x)$$
$$\frac{d\sigma}{d x} = \frac{d\sigma}{d E_a}\cdot \frac{dE_a}{dx} = f(x)* E_e$$

If this is correct, then to reverse the change of variables we have:

$$\frac{d\sigma}{d E_a} = \frac{d\sigma}{d x}*\frac{dx}{dE_a}=f(E_a/E_e)\frac{1}{E_e}$$

Or have I missed something?
 
Last edited:
Physics news on Phys.org
It should be instead of ##f(E_a/E_c)##, ##f(x)*E_c##; so you are missing a factor of ##E_c## , but this of course is circular and you are back with what you started with. :cool:
 
Last edited by a moderator:
Jacobson’s work (1995) [1] demonstrated that Einstein’s equations can be derived from thermodynamic principles, suggesting gravity might emerge from the thermodynamic behavior of spacetime, tied to the entropy of horizons. Other researchers, such as Bekenstein [2] and Verlinde [3], have explored similar ideas, linking gravity to entropy and holographic principles. I’m interested in discussing how these thermodynamic approaches might apply to quantum gravity, particularly at the Planck...

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 20 ·
Replies
20
Views
3K
Replies
4
Views
2K
Replies
14
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K