K.J.Healey
- 622
- 0
The non generated one is just for :
G = 6.667428*10^-11 _m^3 _kg^-1 _s^-2
G = 6.667428*10^-11 _m^3 _kg^-1 _s^-2
Since I don't use Mathematica I can't comment on your use of it, but your potential energy term is incorrect.K.J.Healey said:Heres how i did it in mathematica:
<br /> F= -G m M /r[t]{}^{\wedge}2<br />
<br /> -\frac{G m M}{r(t)^2}<br />
<br /> U=\text{Integrate}[F,r[t]]<br />
<br /> \frac{G m M}{r(t)}<br />
<br /> \rho = \text{ME}/((4/3)*\text{Pi}*\text{RE}{}^{\wedge}3)<br />
<br /> \frac{3 \text{ME}}{4 \pi \text{RE}^3}<br />
M=\rho *(4/3)*\text{Pi}*r[t]{}^{\wedge}3<br />
<br /> \frac{\text{ME} r(t)^3}{\text{RE}^3}<br />
T=(1/2)m (r'[t]){}^{\wedge}2<br />
<br /> \frac{1}{2} m r'(t)^2<br />
<br /> L=T-U<br />
<br /> \frac{1}{2} m r'(t)^2-\frac{G m \text{ME} r(t)^2}{\text{RE}^3}<br />