- #1
- 1,380
- 22
Homework Statement
Ball of mass m and radius r rolls without sliding in a bowl of radius R.
Express it's angular velocity ω as a function of the angle θ.
What are the normal force and friction force as a function of θ.
Homework Equations
Moment of inertia of a solid ball round it's center: ##I_c=\frac{2}{5}mr^2##
Sheteiner's theorem: ##I_A=I_c+mr^2##
Kinetic energy of a rigid body: ##E=\frac{1}{2}I\omega^2##
Centripetal force: ##F=mr\omega^2##
Torque and angular acceleration: ##M=I\alpha=I\dot\omega##
The Attempt at a Solution
The descending in height is transferred to kinetic energy:
$$mg(R-r)\sin\theta=\frac{1}{2}\left( \frac{2}{5}mr^2+mr^2 \right)\omega^2\;\rightarrow\; \omega^2=\frac{10}{7}\frac{R-r}{r^2}g\sin\theta$$
$$\omega=\left( \frac{1}{r}\sqrt{\frac{10}{7}g(R-r)} \right) \cdot (\sin\theta)^{\frac{1}{2}}$$
$$\dot\omega=\left( \frac{1}{2r}\sqrt{\frac{10}{7}g(R-r)} \right) \frac{\cos\theta}{\sqrt{\sin\theta}}$$
The normal force is the substarction of the weight's radial component and the centripetal one:
$$F=mg\sin\theta-\frac{1}{2}I\omega^2=mg\sin\theta-\frac{10}{7}\frac{R-r}{r^2}g\sin\theta=mg\sin\theta\left( \frac{10}{7}\frac{R-r}{r}+1 \right)$$
The friction force:
$$M=f\cdot r=I_c\dot\omega\;\rightarrow\; f=\frac{2}{5}mr\cdot\left( \frac{1}{2r}\sqrt{\frac{10}{7}g(R-r)} \right) \frac{\cos\theta}{\sqrt{\sin\theta}}$$