Ballentine Problem 8.5 (angular momentum)

EE18
Messages
112
Reaction score
13
Homework Statement
Ballentine asks us "Show that the three-dimensional single particle state functions ##\Psi_{m}(\mathbf{x}):= f(r)Y_l^{m}(\theta,\phi)## and ##\Psi_{-m}(\mathbf{x})## have the same position and momentum distributions."
Relevant Equations
See below.
I am struggling with the latter, and think that I somehow need to assume ##f## is real-valued to proceed?

My work:
The position distributions are equal since
$$P_{-m}(\mathbf{x}) = |\Psi_{-m}(\mathbf{x})|^2 = |f(r)Y_l^{-m}(\theta,\phi)|^2 = |f(r)(-1)^m(Y_l^{m})^*|^2 = P_m(\mathbf{x})$$
if we recall that the magnitude of a complex conjugate is equal to the original complex number.

The momentum distributions are equal since (using (5.4) and inserting position space completeness twice)
$$P_{-m}(\mathbf{x}) = |\braket{\mathbf{p}}{\Psi_{-m}}|^2 \equiv \braket{\mathbf{p}}{\Psi_{-m}}\braket{\Psi_{-m}}{\mathbf{p}} =\frac{1}{(2\pi\hbar)^3}\int d\mathbf{x} e^{-i\mathbf{p}\cdot\mathbf{x}}f(r)Y_l^{-m}(\theta,\phi)\int d\mathbf{x}' e^{i\mathbf{p}\cdot\mathbf{x}'}f^*(r')(Y_l^{-m})^*(\theta',\phi')$$
$$ \stackrel{(1)}{=} \frac{1}{(2\pi\hbar)^3}\int d\mathbf{x} e^{-i\mathbf{p}\cdot\mathbf{x}}f(r)(-1)^m(Y_l^{m})^*(\theta,\phi)\int d\mathbf{x}' e^{i\mathbf{p}\cdot\mathbf{x}'}f^*(r')(-1)^mY_l^{m}(\theta',\phi')$$
where in (1) we have used (7.37) and its complex conjugate and that ##(-1)^{2m} = 1##.

...But I can't go any further.

The referenced equations in my work are standard equations like the position representation of the momentum eigenstates. In particular, I think that I need to have that ##f## is real so that, after my last step, I can change variables in each integration to minus the given variable and so show the last equality. But I can't do that without being sure ##f## is real!
 
Last edited:
Physics news on Phys.org
I observe say f(r) is real
\Phi_{-m}(\mathbf{p}) :=\frac{1}{(2\pi\hbar)^3}\int d\mathbf{x} e^{-i\mathbf{p}\cdot\mathbf{x}}f(r)Y_l^{-m}(\theta,\phi)=\frac{(-1)^m}{(2\pi\hbar)^3}\int d\mathbf{x} e^{-i\mathbf{p}\cdot\mathbf{x}}f(r)Y_l^{m}(\theta,\phi)^*=(-1)^m\Phi^*_{m}(\mathbf{-p})
|\Phi_{-m}(\mathbf{p})|^2=|\Phi_{m}(\mathbf{-p})|^2
Is it helpful ?
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top