MHB Basic Question on Ring Homomorphisms

  • Thread starter Thread starter Math Amateur
  • Start date Start date
  • Tags Tags
    Homomorphisms Ring
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading An Introduction to Rings and Modules With K-Theory in View by A.J. Berrick and M.E. Keating (B&K).

I need help to clarify a remark of B&K regarding ring homomorphisms from the zero or trivial ring ...

The relevant text from B&K reads as follows:
https://www.physicsforums.com/attachments/6078
https://www.physicsforums.com/attachments/6079In the above text from B&K's book we read ...

"... ... This follows from the observation that the obvious map from the zero ring to $$R$$ is not a ring homomorphism (unless $$R$$ itself happens to be $$0$$). ... ... "
I do not understand the above statement that the obvious map from the zero ring to $$R$$ is not a ring homomorphism (unless $$R$$ itself happens to be $$0$$) ... ... What, indeed do B&K mean by the obvious map from the zero ring to $$R$$ ... ... ?It seems to me that the obvious map is a homomorphism ... ..Consider the rings $$T, R$$ where $$T$$ is the zero ring and $$R$$ is any arbitrary ring ... so $$T = \{ 0 \}$$ where $$0 = 1$$ ...

Then to me it seems that the "obvious" map is $$f( 0_T) = 0_R$$ ... ... which seems to me to be a ring homomorphism ...

... BUT ... this must be wrong ... but why ... ?

Can someone please clarify the above for me ...

Some help will be very much appreciated ...

Peter
 
Physics news on Phys.org
Hi Peter,
Peter said:
Consider the rings $$T, R$$ where $$T$$ is the zero ring and $$R$$ is any arbitrary ring ... so $$T = \{ 0 \}$$ where $$0 = 1$$ ...

The above analysis is correct.

Peter said:
Then to me it seems that the "obvious" map is $$f( 0_T) = 0_R$$ ... ... which seems to me to be a ring homomorphism ...

... BUT ... this must be wrong ... but why ... ?

The "obvious" map isn't a ring homomorphism because if $R$ is not the trivial ring, then $0_{R}\neq 1_{R}$ and so the "obvious" homomorphism necessarily leads to a contradiction:

$$1_{R}\neq 0_{R}=f(0_{T})=f(1_{T})=1_{R}$$
 
Thread 'Derivation of equations of stress tensor transformation'
Hello ! I derived equations of stress tensor 2D transformation. Some details: I have plane ABCD in two cases (see top on the pic) and I know tensor components for case 1 only. Only plane ABCD rotate in two cases (top of the picture) but not coordinate system. Coordinate system rotates only on the bottom of picture. I want to obtain expression that connects tensor for case 1 and tensor for case 2. My attempt: Are these equations correct? Is there more easier expression for stress tensor...
Back
Top