Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Basic question on the pertubative Standard Model

  1. Mar 14, 2015 #1
    Dear all,

    how to 100% know if a process is allowed in standard model?

    And when a process is allowed, how to know what diagrams contribute, and what of those are the dominant ones?

    Thank you in advance.
     
  2. jcsd
  3. Mar 14, 2015 #2

    ChrisVer

    User Avatar
    Gold Member

    You check whether your process violates any symmetry/law that it is not supposed to.

    I don't think there is any straightforward answer to that. Any diagram can contribute depending on the process. In general all diagrams contribute- some contribute less some contribute more, it depends on the order and the couplings/propagators...
     
  4. Mar 14, 2015 #3
    But if for example you only have the process like: xx -> yy (x and y as unknown variables :P) how to know which diagrams contribute more at the process just by looking at xx -> yy?
     
  5. Mar 14, 2015 #4

    ChrisVer

    User Avatar
    Gold Member

    Quite oftenly in such cases, you take only the 1st order interaction, and you can take just 1 propagator between the particles.
    However that's not a must.
     
  6. Mar 14, 2015 #5
    And that/those propagator/s is the one/s allowed by Feynman rules, right?
     
  7. Mar 14, 2015 #6

    ChrisVer

    User Avatar
    Gold Member

    as an example, it's know that in the SM, the FCNC first order diagrams are forbidden, so you are looking at second order diagrams...
     
  8. Mar 14, 2015 #7

    ChrisVer

    User Avatar
    Gold Member

    It depends on how you choose x and y's to interact... you could as well write a Z0 boson or a photon or an X scalar or whatever... how does x couples to itself? or how does x couples to y?
     
  9. Mar 14, 2015 #8
    Are you trying to tell me to take care about loops, etc?
     
  10. Mar 14, 2015 #9

    ChrisVer

    User Avatar
    Gold Member

    what precision do you want? and what is your x and y?
     
  11. Mar 14, 2015 #10
    Let us say One-Loop Level.

    If I understood well, with a process , let's say: H -> gg.

    We treat H like a scalar field boson so we with the Feynman Rules in front, draw the possible diagrams at tree level, which should be "easy". And then... well, for one-loop level could be many ones so how to know which contribute more? This is a more generic and basic question. Because I can draw loops here and there. I suppose that in our case we just have to draw one diagram with a loop on the gluon external line, another diagram on the other gluon external line, other diagram with a loop on the H incoming line and a last diagram with a loop on the vertex?
     
  12. Mar 14, 2015 #11

    ChrisVer

    User Avatar
    Gold Member

    How could you join a Higgs with two gluons except for using quarks?
     
  13. Mar 14, 2015 #12

    ChrisVer

    User Avatar
    Gold Member

  14. Mar 14, 2015 #13
    One Loop-order?

    But how could I computed a virtual top quark loop is produced, and not any other quark?
     
  15. Mar 14, 2015 #14

    ChrisVer

    User Avatar
    Gold Member

    There could be more (eg bottoms), but the Higgs dominantly couples to top quarks (they are the heaviest or should I say they have the largest Yukawa coupling).

    Also I don't think there is any lower order for this transition... there is no tree coupling between Higgs and gluons since the Higgs is an SU(3) singlet (color-chargeless).
     
  16. Mar 14, 2015 #15
    Where can I read about that?
     
  17. Mar 14, 2015 #16
    I can see if a process is allowed just by checking Feynman rules... but I want to learn to justify and compute the process allowed not just by looking to the "solutions"
     
  18. Mar 14, 2015 #17

    ChrisVer

    User Avatar
    Gold Member

    About what? I said two things....
    The last is a common knowledge, I mean there can only be effective couplings between the higgs and gluons... or you can't write in your lagrangian a term such as [itex]h GG[/itex] without breaking your SM symmetry ([itex]h[/itex] is a doublet of SU(2) )... this terms appears effectively via the triangle diagram.

    The first thing, is just by looking at the Yukawa couplings? (couplings of your fermions[quarks] to scalar fields[higgs this time] )
     
  19. Mar 14, 2015 #18

    ChrisVer

    User Avatar
    Gold Member

    What do you mean by checking the Feynman rules?
    The Feynman rules gives you some relation (simply put the relation between a feynman diagram and the mathematical formulae)
     
  20. Mar 14, 2015 #19
    If I have for example H > gg, I look to the posible vertex wich have gluons, those are quarks, ghosts or more gluons. Then I check to H possible vertex and there is one with 2 fermions so the only possible way is to make a triangle of 3 quarks in between as the diagram you posted.

    I do not like this way of work. That is why I am asking here how to compute these kind of things more "seriously".

    I am not sure I do understand what you mean by relation. I can see the diagram and the mathematical formulae for each one.
     
  21. Mar 14, 2015 #20

    mfb

    User Avatar
    2016 Award

    Staff: Mentor

    There is no general way to look at diagrams and say "this is more important". There are many cases where it is possible, but sometimes you just have to calculate it with QFT (which takes a lot of time).

    "Higgs couples to mass" is one of those rules that help in many diagrams - every quark, every charged lepton and the W boson can run in this loop for the diphoton decay, but top and W are by far the heaviest particles in this group so their contribution will be dominant.
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook




Similar Discussions: Basic question on the pertubative Standard Model
  1. Standard Model (Replies: 2)

  2. Standard model (Replies: 16)

  3. Standard model (Replies: 2)

Loading...