MHB Basis for the eigenspace corresponding

  • Thread starter Thread starter saqifriends
  • Start date Start date
  • Tags Tags
    Basis
Click For Summary
To find the basis for the eigenspace corresponding to the eigenvalue λ = 3, one must solve the equation (A - λI)v = 0. The specific matrix to analyze is given as [1 2 3; -1 -2 -3; 2 4 6]. By inspecting the rank of this matrix, the rank-nullity theorem can be applied to determine the number of basis vectors for the null space. This method provides a systematic approach to identifying the eigenspace and its basis. Understanding these concepts is crucial for solving problems related to eigenvalues and eigenspaces effectively.
saqifriends
Messages
2
Reaction score
0

Attachments

Physics news on Phys.org
saqifriends said:

Hi saqifriends, :)

I have outlined the method to do this kind of problems http://www.mathhelpboards.com/threads/1270-basis-for-each-eigenspace?p=6086&viewfull=1#post6086 Since you have been given a particular eigenvalue, find the eigenspace corresponding to that eigenvalue. Then find a basis for that eigenspace.

Kind Regards,
Sudharaka.
 
as a slight nudge towards the answer, solve the system:

(A - λI)v = 0. in this case, λ = 3, so you must find the null space of the matrix:

$\begin{bmatrix}1&2&3\\-1&-2&-3\\2&4&6 \end{bmatrix}$

the rank of this matrix should be obvious upon inspection, and the rank-nullity theorem then tells you how many basis vectors you should have for the null space.
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 9 ·
Replies
9
Views
4K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 32 ·
2
Replies
32
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
975
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 12 ·
Replies
12
Views
5K
  • · Replies 2 ·
Replies
2
Views
2K