Basset–Boussinesq–Oseen equation (Added Mass and Basset Force)

  • Thread starter Thread starter K41
  • Start date Start date
  • Tags Tags
    Force Mass
Click For Summary
The discussion centers on the Basset-Boussinesq-Oseen (BBO) equations, specifically the concepts of added mass effect and Basset force. The added mass effect refers to the additional resistance an object experiences when it accelerates in a fluid, as it must also accelerate some of the surrounding fluid, effectively increasing its mass. The Basset force involves a lag in the boundary layer due to relative velocity, which is distinct from static forces like buoyancy, which arises from pressure differences without motion. The difference between form drag and buoyancy lies in their mechanisms; drag is influenced by dynamic pressure and friction, while buoyancy is purely a static pressure effect. Understanding these concepts is crucial for analyzing fluid dynamics and the forces acting on objects within fluids.
K41
Messages
94
Reaction score
1
I've been studying the Basset-Boussinesq-Oseen (BBO) Equations and I don't really understand the unsteady forces terms which are:

- Added Mass Effect
- Basset Force

It says the unsteady forces arise from an acceleration to the relative velocity vector. Can someone explain with an example? I'm, having difficulties really picturing what relative velocities are in this context.

Also, the added mass effect comes from the fact that the particle does work on the surrounding fluid. I don't understand this because isn't this how lift/ drag is created? Why is this any different from that?

Finally, regarding the Basset force, if there was a relative velocity (i.e. u-v was non-zero), wouldn't there be a lag in the boundary layer anyway without the need for an acceleration?

As a sidenote, can someone elaborate why form drag and Buoyancy are different? I've read from another thread here that form drag is to do with the dynamic pressure and Buoyancy the static pressure, yet all the formulae to work these out appear to be exactly the same which is the integral of a pressure gradient around the surface :s.
 
Last edited:
Engineering news on Phys.org
Thanks for the post! Sorry you aren't generating responses at the moment. Do you have any further information, come to any new conclusions or is it possible to reword the post?
 
djpailo said:
As a sidenote, can someone elaborate why form drag and Buoyancy are different? I've read from another thread here that form drag is to do with the dynamic pressure and Buoyancy the static pressure, yet all the formulae to work these out appear to be exactly the same which is the integral of a pressure gradient around the surface :s.

Buoyancy is inherently a static phenomenon. You can generate a buoyant force with an object which is not moving, by virtue of the object's displacement of fluid, but you must be moving in order to generate a drag force, the magnitude of which depends on the velocity of the object relative to the fluid.
 
djpailo said:
As a sidenote, can someone elaborate why form drag and Buoyancy are different? I've read from another thread here that form drag is to do with the dynamic pressure and Buoyancy the static pressure, yet all the formulae to work these out appear to be exactly the same which is the integral of a pressure gradient around the surface :s.

In most cases a fluid can only generate a force on an object in one of two ways: Pressure and friction. A portion of the drag is generated by the pressure differences from one side of the object to the other. The buoyancy also generates a force through a pressure difference between one side of the object and the other. The difference between drag and buoyancy has to do with how these pressure differences are generated which SteamKing mentions above. Also a portion of the drag is generated by frictional forces. There is no friction component to buoyancy.

Apparent mass effect is additional drag felt by an object when it accelerates relative to a fluid. Imagine a sphere moving at a constant velocity in a fluid. It is experiencing a certain amount of drag. In order to accelerate the sphere a net force must be applied (F = ma). But when the sphere accelerates in a fluid, in addition to the sphere accelerating some of the surrounding fluid must accelerate as well. As a result you need to apply a larger force in order to get a given acceleration. So you can think of it as you are trying to accelerate a sphere in a vacuum but the sphere has more mass than the sphere in the fluid. Since it has more mass more force must be applied to obtain a given acceleration.

F = (Mass_Sphere + Mass_fluid)*Acceleration

So you can see where the term "apparent mass" comes from. The apparent or effective mass of the object is larger.
 
Buoyancy is typically thought of as an ideal fluid effect (viscous effects are ignored, so no separation). You are correct in that the buoyant force on an object can be found by integrating the pressure around the surface, and the general application of this is the difference in hydrostatic pressure between the top and bottom of an object, which creates an upward force on a positively buoyant object. However, in dynamic environments (such as a wave field), the pressure can be more spatially variant, which can result in any kind of force. Form drag is a result of separation around the object, which cannot be modeled by potential flow (ideal fluid). While it is also a pressure effect, the pressure results from a different mechanism.

Added mass is an acceleration effect, and can be described most simply as the additional mass that must be "pushed out of the way" when an object accelerates. We can all agree that a sphere would be harder to move underwater than in the air, and this is due to a) drag (which is proportional to velocity squared), and b) added mass (which is proportional to acceleration, and greater for more bluff bodies).

Hope that helps!
 
What mathematics software should engineering students use? Is it correct that much of the engineering industry relies on MATLAB, making it the tool many graduates will encounter in professional settings? How does SageMath compare? It is a free package that supports both numerical and symbolic computation and can be installed on various platforms. Could it become more widely used because it is freely available? I am an academic who has taught engineering mathematics, and taught the...

Similar threads

  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 5 ·
Replies
5
Views
7K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
660
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 56 ·
2
Replies
56
Views
4K
  • · Replies 47 ·
2
Replies
47
Views
5K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K