PeterDonis
Mentor
- 49,472
- 25,520
From the paper you reference, it seems to me that the key issue is that the group measure for a non-compact group is not normalizable. A simple example given in the paper is that, if the group in question is the reals--for example, if we think the problem is invariant under translation along one direction, regardless of the size of the translation--then the appropriate measure is Lebesgue measure, which is not normalizable; the total measure over the reals is infinite.gentzen said:the message of those paradoxes
However, I'm not sure any real problem actually requires the full range of a non-compact group. In the simple example just described, any real problem will not be invariant under translation by any distance whatsoever. It will only be invariant under translation over some bounded region. So I ought to be able to find some compact group with a normalizable measure that represents the actual invariance and use that instead.

So I am guess I didn't miss anything.