stevendaryl said:
That's true. Everything can affect everything else. But the point of a local theory is that everything that's relevant about distant particles and fields is already captured in the values of local fields and the positions/momenta of local particles. So the evolution equations don't need to take into account anything other than local conditions.
This is in contrast to a nonlocal theory, where the evolution equations must potentially take into account everything.
The point I am trying to make is about the failure of the freedom assumption, not about locality. The theory is local, OK. Once you know the local field (which would be rather difficult, as it would require infinite resolution and accuracy) you can ignore distant sources, OK. So what?
You want to describe the local field at the locations of Alice, Bob and Source (source of entangled particles) as a brute fact (electric and magnetic field vectors in each point). This is your choice. It is impossible to posses such an information but this is your problem.
Now, my choice is different. I want to calculate the local fields at Alice, Bob and Source as a function of the field sources. For a limited number of sources this is in principle computable. Let's say, for simplicity, that Alice, Source and Bob are placed on the Z axis of some reference frame and they are not moving relative to each other. In this conditions we can express the fields in the following way:
E,B (Alice) = f(q1, q2,...qn, x1, x2,...xn,y1, y2,...yn, z1, z2,...zn, mx1, mx2,...,mxn, my1, my2,... myn, mz1, mz2,...mzn)
E,B (Source) = f(q1, q2,...qn, x1, x2,...xn,y1, y2,...yn, z1+AS, z2+AS,...zn+AS, mx1, mx2,...,mxn, my1, my2,... myn, mz1, mz2,...mzn)
E,B (Bob) = f(q1, q2,...qn, x1, x2,...xn,y1, y2,...yn, z1+SB, z2+SB,...zn+SB, mx1, mx2,...,mxn, my1, my2,... myn, mz1, mz2,...mzn)
where:
n = number of charges in the universe
q = electric charge
xi, yi, zi = position of charge i
mxi, myi, mzi = momentum of the charge
AS = Alice-Source distance
SB = Bob-source distance
Now, looking at the equations above, can you maintain that the local fields at Alice, Source and Bob are independent parameters? (to be clear, I mean independent in a strict mathematical way, I know that there is no non-local instantaneous conection between them)
If you replace the Alice Z coordinate in the Alice's field equation you get the fields at Source, or Bob. The three local fields are as dependent as you can get.
At this point we can ignore the distant sources. Our experiment begins and the evolution of Alice, Bob and Source only depends on the local fields. Now, this is the place where your reasoning fails. Their evolution is still not independent because the dependency was already there in the initial values of their local fields. As the time passes, those correlations are maintained (We are simply doing the same mathematical transformation on the three correlated fields). In the absence of some indeterministic process those correlations will remain forever.
I will give you an answer to all the points you have raised, but now I have to depart from the computer, sorry.