How Does the Bernstein-Schröder Theorem Establish Set Equivalence?

Click For Summary
SUMMARY

The Bernstein-Schröder Theorem establishes that two sets, ##X## and ##Y##, are equivalent if there exist injections from ##X## to ##Y## and from ##Y## to ##X##. The proof involves analyzing the unique preimages of elements under these injections, leading to the formation of disjoint sets based on the length of their ancestry sequences. The theorem concludes that these injections can be restricted to create surjective mappings between subsets of the original sets, thereby demonstrating a bijection between ##X## and ##Y##.

PREREQUISITES
  • Understanding of injections and bijections in set theory
  • Familiarity with the concept of ancestry in mathematical functions
  • Knowledge of finite and infinite sequences
  • Basic grasp of set equivalence and its implications
NEXT STEPS
  • Study the properties of injections and bijections in set theory
  • Explore the concept of ancestry in mathematical functions
  • Learn about finite and infinite sequences in the context of set theory
  • Investigate other theorems related to set equivalence and cardinality
USEFUL FOR

Mathematicians, students of set theory, and anyone interested in the foundational principles of mathematical equivalence and function mappings.

Wendel
Messages
10
Reaction score
0
The theorem: Let ##X##, ##Y## be sets. If there exist injections ##X \to Y## and ##Y \to X##, then ##X## and ##Y## are equivalent sets.

Proof: Let ##f : X \rightarrow Y## and ##g : Y \rightarrow X## be injections. Each point ##x \in g(Y)⊆X## has a unique preimage ##y\in Y## under g; no ##x \in X-g(Y)## has one. Each point ##y \in f(X)⊆Y## has a unique preimage ##x \in X## under ##f##; no ##y \in Y-f(X)## has one.
Consider the two composition telescopes:
$$...\to X \to Y \to X \to Y \to X \to Y \to X$$
$$... \to Y \to X \to Y \to X \to Y \to X \to Y$$
Composed of alternating copies of ##f## and ##g##.
Peering through these telescopes from ##X## and ##Y##, we see that each ##x \in X## and each ##y \in Y## has a unique maximal sequence of preimages under alternating copies of the injections ##f## and ##g##, which we call their ancestry:

$$...\to y_{2k+1} \to x_{2k} \to ... \to x_5 \to y_4 \to x_3 \to y_2 \to x_1=x$$
and
$$...\to x_{2k+1} \to y_{2k} \to ... \to y_5 \to x_4 \to y_3 \to x_2 \to y_1=y$$

The ancestry of each ##x \in X## and each ##y \in Y## either has finite even length ##2k \geq 2##, finite odd length ##2k+1 \geq 1##, or infinite length. These properties give disjoint sets ##X_{even}, X_{odd},## and ##X_\infty## with union ##X##, and disjoint sets ##Y_{even}, Y_{odd},## and ##Y_\infty## with union Y.
And the injections restrict to the three injections:
$$f : X_{odd} \to Y_{even}$$
$$g : Y_{odd} \to X_{even}$$
and
$$f : X_\infty \to Y_\infty$$
that are surjective.
So they determine a bijection ##X \to Y##.
$$\blacksquare$$

At first I thought this might have meant that for every ##x \in g(Y)## there is either a finite composition of inverse images of ##x## and ##y##:
$$g^{-1}(f^{-1}(...g^{-1}(f^{-1}(y))...))=y$$
and
$$f^{-1}(g^{-1}(...f^{-1}(g^{-1}(x))...))=x$$
or there is no such finite composition, in which case ##x \in X_\infty## or ##y \in Y_\infty##
but such a sequence of preimages under f and g would always be of even length.
I am assuming by restricting f they mean ##f(x)## such that ##x \in X_{even}## etc., and similarly for g.
Why are they surjective though?
If some element ##x_n \in X## occurs in the sequence of preimages of ##x_1## under alternating copies of f and g, then it does not occur in any other sequence, so if we have another element ##x_2 \in X## (such that ##x_2 \ne x_1##, then ##x_2## is not in the first sequence at all.
I'm wondering why these restrictions are surjective.
What do they mean by maximal sequence of preimages/ancestry?
Perhaps it is the smallest sequence for no subsequence of which do we have an element of ##X## or an element of ##Y## being sent to itself?
Also ##f## and ##g## could be any injections, so why should their restrictions to the subsets ##X_{even},X_{odd},X_\infty⊆X## and ##Y_{even},Y_{odd},Y_{infty}⊆Y## be the functions
$$f : X_{odd} \to Y_{even}$$
$$g : Y_{odd} \to X_{even}$$
and
$$f : X_\infty \to Y_\infty$$
?
 
Physics news on Phys.org
Wendel said:
At first I thought this might have meant that for every ##x \in g(Y)## there is either a finite composition of inverse images of ##x## and ##y##:
$$g^{-1}(f^{-1}(...g^{-1}(f^{-1}(y))...))=y$$
and
$$f^{-1}(g^{-1}(...f^{-1}(g^{-1}(x))...))=x$$
or there is no such finite composition, in which case ##x \in X_\infty## or ##y \in Y_\infty##

If ##g^{-1}(f^{-1}(...g^{-1}(f^{-1}(y))...))=y##, then that means that ##y \in Y_\infty##. It means that you can keep going in either direction infinitely far (a cycle is a special case of an infinite chain). You only get a finite chain in the case where the last element in the chain (or first element, depending on how you are counting) has no pre-image.
 
Last edited:
  • Like
Likes   Reactions: Wendel

Similar threads

  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 18 ·
Replies
18
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 44 ·
2
Replies
44
Views
7K