MHB Bessel Function: a^2-b^2 Integral Relationship

Click For Summary
The discussion centers on proving the integral relationship involving Bessel functions, specifically showing that the equation holds for the given parameters. The proof utilizes integration by parts and identities related to Bessel functions to derive the integral expression. Key steps include manipulating the integral of the product of Bessel functions and applying boundary conditions. The final expression confirms the relationship between the integral and the Bessel functions evaluated at specific points. This establishes a significant connection in the study of Bessel functions and their integrals.
Another1
Messages
39
Reaction score
0
show that
$$(a^2-b^2)\int_{0}^{P} J_{v}(ax)J_{v}(bx)x\,dx=P\left\{bJ_{v}(aP)J^{'}_{v}(bP)-aJ^{'}_{v}(ap)J_{v}(bP)\right\}$$
when $$J^{'}_{v}(aP)=\d{J_{v}(ax)}{(ax)},(x=P)$$

I don, have idea
 
Mathematics news on Phys.org
Another said:
show that
$$(a^2-b^2)\int_{0}^{P} J_{v}(ax)J_{v}(bx)x\,dx=P\left\{bJ_{v}(aP)J^{'}_{v}(bP)-aJ^{'}_{v}(ap)J_{v}(bP)\right\}$$
when $$J^{'}_{v}(aP)=\d{J_{v}(ax)}{(ax)},(x=P)$$

(My thinking)
________________________________________________________________________________________
identities

$$\d{}{x}\left\{ x^{-v}J_{v}(ax)\right\}=-ax^{-v}J_{v+1}(ax)$$
$$\d{}{x}\left\{ x^{v+1}J_{v+1}(ax)\right\}=ax^{v+1}J_{v}(ax) $$

$$\d{}{x}\left\{ x^{v}J_{v}(x)\right\}=x^{v}J_{v-1}(x) $$
$$\d{}{x}\left\{ x^{v+1}J_{v+1}(x)\right\}=x^{v+1}J_{v}(x) $$
$$x^{v+1}J_{v+1}(x)=\int \left\{ x^{v+1}J_{v}(x) \right\} dx $$
________________________________________________________________________________________
soluion

$$\int J_{v}(ax)J_{v}(bx)x dx = \int \left[ x^{v+1}J_{v}(ax) \right] \left[ x^{-v}J_{v}(bx) \right]dx $$
$$uv-\int v du = \left[ x^{-v}J_{v}(bx) \right] \left[ \frac{x^{v+1}}{a}J_{v+1}(ax) \right]+\frac{b}{a}\int \left[ x^{-v}J_{v+1}(bx) \right] \left[ x^{v+1}J_{v+1}(ax) \right] dx $$

see (by parts again)
$$\int \left[ x^{-v}J_{v+1}(bx) \right] \left[ x^{v+1}J_{v+1}(ax) \right] dx=\int \left[ x^{v+1}J_{v+1}(bx) \right] \left[ x^{-v}J_{v+1}(ax) \right] dx $$
$$\int \left[ x^{v+1}J_{v+1}(bx) \right] \left[ x^{-v}J_{v+1}(ax) \right] dx=uv-\int vdu $$
$$\int \left[ x^{v+1}J_{v+1}(bx) \right] \left[ x^{-v}J_{v+1}(ax) \right] dx=-\frac{1}{a} \left[ x^{v+1}J_{v+1}(bx) \right] \left[ x^{-v}J_{v}(ax) \right] + \frac{b}{a}\int \left[ x^{v+1}J_{v}(bx) \right] \left[ x^{-v}J_{v}(ax) \right] dx $$

So...
$$\int J_{v}(ax)J_{v}(bx)x dx = \left[ x^{-v}J_{v}(bx) \right] \left[ \frac{x^{v+1}}{a}J_{v+1}(ax) \right]+\frac{b}{a}\left[ -\frac{1}{a} \left[ x^{v+1}J_{v+1}(bx) \right] \left[ x^{-v}J_{v}(ax) \right] + \frac{b}{a}\int \left[ x^{v+1}J_{v}(bx) \right] \left[ x^{-v}J_{v}(ax) \right] \right] dx $$
$$\int J_{v}(ax)J_{v}(bx)x dx = \frac{a}{a^2}\left[ x^{-v}J_{v}(bx) \right] \left[ x^{v+1}J_{v+1}(ax) \right] -
\frac{b}{a} \frac{1}{a} \left[ x^{v+1}J_{v+1}(bx) \right] \left[ x^{-v}J_{v}(ax) \right] + \frac{b}{a} \frac{b}{a}\int \left[ x^{v+1}J_{v}(bx) \right] \left[ x^{-v}J_{v}(ax) \right] dx $$
$$a^{2}\int J_{v}(ax)J_{v}(bx)x dx = a\left[ x^{-v}J_{v}(bx) \right] \left[ x^{v+1}J_{v+1}(ax) \right] -
b \left[ x^{v+1}J_{v+1}(bx) \right] \left[ x^{-v}J_{v}(ax) \right] + b^2 \int J_{v}(bx) J_{v}(ax) xdx $$
$$(a^{2}-b^{2})\int J_{v}(ax)J_{v}(bx)x dx = a\left[ x^{-v}J_{v}(bx) \right] \left[ x^{v+1}J_{v+1}(ax) \right] -
b \left[ x^{v+1}J_{v+1}(bx) \right] \left[ x^{-v}J_{v}(ax) \right] $$
$$(a^{2}-b^{2})\int J_{v}(ax)J_{v}(bx)x dx = ax J_{v}(bx) J_{v+1}(ax) -
bx J_{v+1}(bx) J_{v}(ax) $$

And finally...
$$(a^{2}-b^{2}) \int_{0}^{P} J_{v}(ax)J_{v}(bx)x \,dx = P(a J_{v}(bP) J_{v+1}(aP) - b J_{v+1}(bP) J_{v}(aP)) $$

________________________________________________________________________________________
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
8K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K