MHB Bessel Function: a^2-b^2 Integral Relationship

Click For Summary
SUMMARY

The forum discussion focuses on the integral relationship involving Bessel functions, specifically demonstrating that $$(a^2-b^2)\int_{0}^{P} J_{v}(ax)J_{v}(bx)x\,dx=P\left\{bJ_{v}(aP)J^{'}_{v}(bP)-aJ^{'}_{v}(aP)J_{v}(bP)\right\}$$. The discussion includes the derivation of this relationship using integration by parts and identities related to Bessel functions. Key identities used include $$\d{}{x}\left\{ x^{-v}J_{v}(ax)\right\}=-ax^{-v}J_{v+1}(ax)$$ and $$\d{}{x}\left\{ x^{v+1}J_{v+1}(ax)\right\}=ax^{v+1}J_{v}(ax)$$.

PREREQUISITES
  • Understanding of Bessel functions, specifically $J_{v}(x)$ and $J'_{v}(x)$.
  • Knowledge of integration techniques, particularly integration by parts.
  • Familiarity with mathematical notation and identities related to differential calculus.
  • Basic understanding of limits and definite integrals.
NEXT STEPS
  • Study the properties and applications of Bessel functions in mathematical physics.
  • Learn advanced integration techniques, focusing on integration by parts and its applications.
  • Explore the derivation and significance of Bessel function identities in applied mathematics.
  • Investigate the role of Bessel functions in solving differential equations, particularly in cylindrical coordinates.
USEFUL FOR

Mathematicians, physicists, and engineers interested in applied mathematics, particularly those working with Bessel functions and integral equations.

Another1
Messages
39
Reaction score
0
show that
$$(a^2-b^2)\int_{0}^{P} J_{v}(ax)J_{v}(bx)x\,dx=P\left\{bJ_{v}(aP)J^{'}_{v}(bP)-aJ^{'}_{v}(ap)J_{v}(bP)\right\}$$
when $$J^{'}_{v}(aP)=\d{J_{v}(ax)}{(ax)},(x=P)$$

I don, have idea
 
Physics news on Phys.org
Another said:
show that
$$(a^2-b^2)\int_{0}^{P} J_{v}(ax)J_{v}(bx)x\,dx=P\left\{bJ_{v}(aP)J^{'}_{v}(bP)-aJ^{'}_{v}(ap)J_{v}(bP)\right\}$$
when $$J^{'}_{v}(aP)=\d{J_{v}(ax)}{(ax)},(x=P)$$

(My thinking)
________________________________________________________________________________________
identities

$$\d{}{x}\left\{ x^{-v}J_{v}(ax)\right\}=-ax^{-v}J_{v+1}(ax)$$
$$\d{}{x}\left\{ x^{v+1}J_{v+1}(ax)\right\}=ax^{v+1}J_{v}(ax) $$

$$\d{}{x}\left\{ x^{v}J_{v}(x)\right\}=x^{v}J_{v-1}(x) $$
$$\d{}{x}\left\{ x^{v+1}J_{v+1}(x)\right\}=x^{v+1}J_{v}(x) $$
$$x^{v+1}J_{v+1}(x)=\int \left\{ x^{v+1}J_{v}(x) \right\} dx $$
________________________________________________________________________________________
soluion

$$\int J_{v}(ax)J_{v}(bx)x dx = \int \left[ x^{v+1}J_{v}(ax) \right] \left[ x^{-v}J_{v}(bx) \right]dx $$
$$uv-\int v du = \left[ x^{-v}J_{v}(bx) \right] \left[ \frac{x^{v+1}}{a}J_{v+1}(ax) \right]+\frac{b}{a}\int \left[ x^{-v}J_{v+1}(bx) \right] \left[ x^{v+1}J_{v+1}(ax) \right] dx $$

see (by parts again)
$$\int \left[ x^{-v}J_{v+1}(bx) \right] \left[ x^{v+1}J_{v+1}(ax) \right] dx=\int \left[ x^{v+1}J_{v+1}(bx) \right] \left[ x^{-v}J_{v+1}(ax) \right] dx $$
$$\int \left[ x^{v+1}J_{v+1}(bx) \right] \left[ x^{-v}J_{v+1}(ax) \right] dx=uv-\int vdu $$
$$\int \left[ x^{v+1}J_{v+1}(bx) \right] \left[ x^{-v}J_{v+1}(ax) \right] dx=-\frac{1}{a} \left[ x^{v+1}J_{v+1}(bx) \right] \left[ x^{-v}J_{v}(ax) \right] + \frac{b}{a}\int \left[ x^{v+1}J_{v}(bx) \right] \left[ x^{-v}J_{v}(ax) \right] dx $$

So...
$$\int J_{v}(ax)J_{v}(bx)x dx = \left[ x^{-v}J_{v}(bx) \right] \left[ \frac{x^{v+1}}{a}J_{v+1}(ax) \right]+\frac{b}{a}\left[ -\frac{1}{a} \left[ x^{v+1}J_{v+1}(bx) \right] \left[ x^{-v}J_{v}(ax) \right] + \frac{b}{a}\int \left[ x^{v+1}J_{v}(bx) \right] \left[ x^{-v}J_{v}(ax) \right] \right] dx $$
$$\int J_{v}(ax)J_{v}(bx)x dx = \frac{a}{a^2}\left[ x^{-v}J_{v}(bx) \right] \left[ x^{v+1}J_{v+1}(ax) \right] -
\frac{b}{a} \frac{1}{a} \left[ x^{v+1}J_{v+1}(bx) \right] \left[ x^{-v}J_{v}(ax) \right] + \frac{b}{a} \frac{b}{a}\int \left[ x^{v+1}J_{v}(bx) \right] \left[ x^{-v}J_{v}(ax) \right] dx $$
$$a^{2}\int J_{v}(ax)J_{v}(bx)x dx = a\left[ x^{-v}J_{v}(bx) \right] \left[ x^{v+1}J_{v+1}(ax) \right] -
b \left[ x^{v+1}J_{v+1}(bx) \right] \left[ x^{-v}J_{v}(ax) \right] + b^2 \int J_{v}(bx) J_{v}(ax) xdx $$
$$(a^{2}-b^{2})\int J_{v}(ax)J_{v}(bx)x dx = a\left[ x^{-v}J_{v}(bx) \right] \left[ x^{v+1}J_{v+1}(ax) \right] -
b \left[ x^{v+1}J_{v+1}(bx) \right] \left[ x^{-v}J_{v}(ax) \right] $$
$$(a^{2}-b^{2})\int J_{v}(ax)J_{v}(bx)x dx = ax J_{v}(bx) J_{v+1}(ax) -
bx J_{v+1}(bx) J_{v}(ax) $$

And finally...
$$(a^{2}-b^{2}) \int_{0}^{P} J_{v}(ax)J_{v}(bx)x \,dx = P(a J_{v}(bP) J_{v+1}(aP) - b J_{v+1}(bP) J_{v}(aP)) $$

________________________________________________________________________________________
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
8K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K