- #1
LagrangeEuler
- 717
- 22
Generating function for Bessel function is defined by
[tex]G(x,t)=e^{\frac{x}{2}(t-\frac{1}{t})}=\sum^{\infty}_{n=-\infty}J_n(x)t^n[/tex]
Why here we have Laurent series, even in case when functions are of real variables?
[tex]G(x,t)=e^{\frac{x}{2}(t-\frac{1}{t})}=\sum^{\infty}_{n=-\infty}J_n(x)t^n[/tex]
Why here we have Laurent series, even in case when functions are of real variables?