MHB Betting Strategy: Win Profits 90% of the Time

  • Thread starter Thread starter xNICK1
  • Start date Start date
  • Tags Tags
    Strategy
AI Thread Summary
The discussion revolves around creating a profitable betting strategy with a payout of 1:1, where a player wins 1 out of 4 rounds 90% of the time. The current strategy results in a negative profit after several games, prompting the original poster to seek advice on improving their betting method. Key points include the need to adjust betting amounts based on previous outcomes to achieve positive results. Participants challenge each other's understanding of the problem, indicating a lack of clarity on the optimal approach. The conversation highlights the complexities of betting strategies and the importance of adapting methods for better profitability.
xNICK1
Messages
14
Reaction score
0
Looking for help to try an make a profitable strategy off the example.
payout= 1:1
Using 4 rounds the strategy wins 1 of 4 rounds 90% of the time, the other 10% it loses all 4 rounds
Rules: if any round is won that game is over, else keep betting till all 4 rounds over
The question is how to I change the betting method to turn positive results
Key= g=game, r=round, b=betting amount, pl=current running Profit/lose
Ex1: 10 games of 4 rounds
g1: r1: b=1, lost, pl=-1 | r2: b=2, lost, pl=-3 | r3: b=4, won, pl=1
g2: r1: b=1, lost, pl=0 | r2: b=2, won, pl=2
g3: r1: b=1, lost, pl=1 | r2: b=2, lost, pl=-1 | r3: b=4, lost, pl=-5 | r4: b=8, won, pl=3
g4: r1: b=1, lost, pl=2 | r2: b=2, lost, pl=0 | r3: b=4, won, pl=4
g5: r1: b=1, won, pl=5
g6: r1: b=1, won, pl=6
g7: r1: b=1, won, pl=7
g8: r1: b=1, won, pl=8
g9: r1: b=1, won, pl=9
g10: r1: b=1, lost, pl=8 | r2: b=2, lost, pl=6 | r3: b=4, lost, pl=2 | r4: b=8, lost, pl=-6
Ex1: results to a -6 profit/lose after winning 9 trades in a row before losing 1
Is it possible?
 
Mathematics news on Phys.org
Challenge questions are posted as a test to other members where the OP knows the answer. It seems to me that you don't know it yet.

-Dan
 
Facts, want to give your 2 cents?
 
xNICK said:
Facts, want to give your 2 cents?
Are you saying you already know the answer? It doesn't look that way from the problem statement. If so, my apologies.

-Dan
 
No sir, I do not know the answer. Which is why I posted the question. I was unaware I needed to know the answer for this forum. My apologies.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top