MHB Betting Strategy: Win Profits 90% of the Time

  • Thread starter Thread starter xNICK1
  • Start date Start date
  • Tags Tags
    Strategy
AI Thread Summary
The discussion revolves around creating a profitable betting strategy with a payout of 1:1, where a player wins 1 out of 4 rounds 90% of the time. The current strategy results in a negative profit after several games, prompting the original poster to seek advice on improving their betting method. Key points include the need to adjust betting amounts based on previous outcomes to achieve positive results. Participants challenge each other's understanding of the problem, indicating a lack of clarity on the optimal approach. The conversation highlights the complexities of betting strategies and the importance of adapting methods for better profitability.
xNICK1
Messages
14
Reaction score
0
Looking for help to try an make a profitable strategy off the example.
payout= 1:1
Using 4 rounds the strategy wins 1 of 4 rounds 90% of the time, the other 10% it loses all 4 rounds
Rules: if any round is won that game is over, else keep betting till all 4 rounds over
The question is how to I change the betting method to turn positive results
Key= g=game, r=round, b=betting amount, pl=current running Profit/lose
Ex1: 10 games of 4 rounds
g1: r1: b=1, lost, pl=-1 | r2: b=2, lost, pl=-3 | r3: b=4, won, pl=1
g2: r1: b=1, lost, pl=0 | r2: b=2, won, pl=2
g3: r1: b=1, lost, pl=1 | r2: b=2, lost, pl=-1 | r3: b=4, lost, pl=-5 | r4: b=8, won, pl=3
g4: r1: b=1, lost, pl=2 | r2: b=2, lost, pl=0 | r3: b=4, won, pl=4
g5: r1: b=1, won, pl=5
g6: r1: b=1, won, pl=6
g7: r1: b=1, won, pl=7
g8: r1: b=1, won, pl=8
g9: r1: b=1, won, pl=9
g10: r1: b=1, lost, pl=8 | r2: b=2, lost, pl=6 | r3: b=4, lost, pl=2 | r4: b=8, lost, pl=-6
Ex1: results to a -6 profit/lose after winning 9 trades in a row before losing 1
Is it possible?
 
Mathematics news on Phys.org
Challenge questions are posted as a test to other members where the OP knows the answer. It seems to me that you don't know it yet.

-Dan
 
Facts, want to give your 2 cents?
 
xNICK said:
Facts, want to give your 2 cents?
Are you saying you already know the answer? It doesn't look that way from the problem statement. If so, my apologies.

-Dan
 
No sir, I do not know the answer. Which is why I posted the question. I was unaware I needed to know the answer for this forum. My apologies.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top