Big Bang Nucleosynthesis; electron-photon ratio

  • Thread starter Thread starter ergospherical
  • Start date Start date
  • Tags Tags
    Electron Photon
ergospherical
Science Advisor
Homework Helper
Education Advisor
Insights Author
Messages
1,097
Reaction score
1,384
Homework Statement
See the image below!
Relevant Equations
N/A
1716060066146.png


I'm asking mainly about part (c). Within the context of BBN, I'm a little unsure how you account for different baryons (i.e. does ##n_b## include neutrons, protons, hydrogen and helium, given that helium itself contains both neutrons and protons?)

For completeness, for part (b) I would just use the non-relativistic number density expression for electrons (given that ##T < m_e##) and the relativistic one for photons:\begin{align*}
n_{e} &= 2\left( \frac{m_e T}{2\pi} \right)^{3/2} e^{-m_e/T} \\
n_{\gamma} &= \frac{2\zeta(3)}{\pi^2} T^3
\end{align*}and take the ratio.

So coming back to (c), we have derived elsewhere that ##n_{\mathrm{He}}/n_{\mathrm{H}} \sim 1/16##. What should I write for the baryon number ##n_b##? At this point I would have thought almost all neutrons be inside helium nuclei, but the question hints not to ignore terms of order ##n_n/n_p##.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top