Binding Energy and Mass Deficit

1. Sep 13, 2007

kcodon

Hi there all,

I'm new at this whole idea of using a forum, but am unfortunately stuck on some of the theory behind my high school nuclear physics teaching. Basically its to do with the mass deficit and E=mc^2. We have learnt so far that the uncombined nucleons of an atom have more mass than the combined atom...and this mass deficit is converted into binding energy by E=mc^2, as a result of strong nuclear force. So I get that part i think, its just when you have a nuclear reaction, for example the fusion of deuterium and tritium to make alpha particle and a neutron. I have fiddled around with the numbers, playing with the mass deficit, and it seems to me that the binding energy of tritium and deuterium, plus the energy from the mass deficit, is equal to the binding energy in the helium nucleus. So I am stumped as to how any other energy is thus emitted, as the mass deficit gives the energy for additional binding energy in the helium nucleus...? I know of course that there must be heaps emitted, but to me it appears that it all goes into the binding energy of product....

If anyone could shed some light on this little dilemma of mine it would be greatly appreciated,

Thanks,

Kcodon

2. Sep 13, 2007

Norman

This post by Astronuc explains it quite well I think. See the middle paragraphs.

3. Sep 13, 2007

Astronuc

Staff Emeritus
Here is a good explanation of binding energy

http://hyperphysics.phy-astr.gsu.edu/hbase/nucene/nucbin.html

4. Sep 15, 2007

kcodon

Thanks Astronuc,

I think I've realised the error of my ways...by the nucleons binding together with strong nuclear force to form nucleus, there is a loss in energy, shown by the fact that energy must be put in (binding energy) to seperate nucleus back into nucleons. Binding energy is therefore misleading...nucleons are not held together by binding energy, but the nuclear force. The binding energy is the energy required to break strong nuclear force, and the nucleus actually has less energy (equal to binding energy). Therefore the mass deficit is directly related to E=mc^2 and voila we have energy.

5. Sep 15, 2007

Astronuc

Staff Emeritus
Correct. The binding energy is released during a nuclear reaction. It is the energy that must be put back into the nucleus to separate the nucleons.

When a neutrons combines with a proton to form a deuteron, a gamma ray is given off. That is the binding energy. Similar when a deutron absorbs a neutron, a triton (nucleus of H3 tritium atom) is formed, and binding energy is given off as a gamma ray.

When a deuteron and triton 'fuse', the reaction forms a helium nucleus (alpha particle) and free neutron. The binding energy is then expressed in the kinetic energy of alpha particle and neutron.

6. Sep 28, 2007

johna

could somebody explain in which field (EM or SNF) this energy released in nuclear FISSION (200MeV) is stored before the fission event. The "binding energy" terminology seems to have introduced some confusion about the nature of this energy source.