Krushnaraj Pandya said:
Still not clear to me, per nucleon as in we remove the nucleons one by one and add up all the energies required in each step? What's the difference between total binding energy then since it is also the energy required to disassemble the nucleus
It doesn't matter if you remove the nucleons one at a time or all at once. The total energy remains the same. The difference between the total binding energy and the binding energy per nucleon is right in their names. Total binding energy is the total amount of energy required. The binding energy per nucleon is the total divided by the number of nucleons.
Note that the actual energy you would spend to remove successive nucleons, one at a time, changes as you remove more and more nucleons. Consider lithium-6, with a binding energy of around 5.3 MeV per nucleon. If you remove a proton and a neutron you get helium-4, with a binding energy of around 7.075 MeV per nucleon. Thus the energy spent to remove successive nucleons
must change, otherwise every element would have identical binding energy per nucleon. That is, if it took 5.3 MeV to remove every single nucleon, one at a time, from a nucleus of lithium-6, then after removing a proton and a neutron our binding energy per nucleon should still be 5.3 MeV. But it's not. It has risen to around 7 MeV. That means it took
less than 5.3 MeV to remove that first nucleon. The total binding energy of lithium-6 is around 31.8 MeV, while helium-4 is 28.3 MeV, for a difference between them of 3.5 MeV. So it actually took far less than 5.3 MeV to remove not just one, but
two nucleons from lithium-6.
This is similar to removing electrons from their atomic orbitals. The first electron usually takes far less energy to remove than the next electron, which requires less energy to remove than the next electron, and so on... But the
total energy required to remove the electrons from an atom is identical for all atoms of that type. We can take this total energy and divide by the number of electrons to get the binding energy per electron. While this doesn't tell us the amount of energy required to remove any
specific electron, it immediately gives us an idea of how tightly bound the electrons are to the nucleus. An analogous situation occurs for nucleons and nuclei.
Does that make sense?