MHB Bland - Rings and their Modules 2011

  • Thread starter Thread starter steenis
  • Start date Start date
  • Tags Tags
    Modules Rings
steenis
Messages
312
Reaction score
18
If the moderators agree, I have made a thread on the book of Bland - Rings and their Modules 2011.
 
Physics news on Phys.org
I want to take you to Example 1 of section 1.5 p.33: "$\mbox{Hom} _R (M,N)$ as a left R-module.

Let $M$ and $N$ be two right R-modules. R is not necessarely commutative.
On 9th line of this example, Bland claims that $\mbox{Hom} _R (M,N)$ is a left R-module if we define $[r\bullet f](x)=f(xr)$ for $r\in R$ and $x\in M$. To prove that $\mbox{Hom} _R (M,N)$ is a left R-module, we have to prove conditions (1), (2), (3) and (4) of Definition 1.4.1 p.26 (adapted for left R-modules). Bland proves (3) as follows, $r\in R$, $s\in R$, $x\in M$:

$[s\bullet (r\bullet f)[(x)$ = $[r\bullet f](xs)$ = $[f]((xs)r)$ = $[f](x(sr))$ = $[(sr)\bullet f](x)$

To prove conditions (1), (2), and (4) is easy.

However, he omits to prove that if $f$ is an R-map then $[r\bullet f]$ is an R-map for $r\in R$, i.e., if $f\in \mbox{Hom} _R (M,N)$ then $[r\bullet f] \in \mbox{Hom} _R (M,N)$.

And that is my problem.

Given for $r\in R$, $a\in R$, and $x\in M$ is $[r\bullet f](x)=f(xr)$ and $f(xa)=f(x)a$, we have to prove that $[r\bullet f](xa)$ = $[r\bullet f](x)a$. Here is a start:

$[r\bullet f](xa)$ = $[f]((xa)r)$ = $[f](x(ar))$ = ? = $[r\bullet f](x)a$

Who can fill in the missing steps ?
 
Hi steenis,

If the given conditions are correct, then there is problem with Bland's claim here. If $R$ is commutative, then indeed $\operatorname{Hom}_R(M,N)$ is a left $R$-module with the given $R$-action. However, if $R$ is non-commutative, then the result need not hold. For suppose $R$ is a non-commutative, unital ring. We may view $R$ as a right $R$-module in the usual way. Consider the element $i \in \operatorname{Hom}_R(R,R)$ given by $i(r) = r$. Then $[b\cdot i](a) = i(ab) = ab$, but $[b\cdot i](1)a = i(1b)a = i(b)a = ba\neq ab = [b\cdot i](a)$. Hence, $[b\cdot i]\notin \operatorname{Hom}_R(R,R)$.

By the way, I've noticed that you and Peter are working on issues between Bland's and Rotman's texts. I will address some of those questions if I have time.
 
steenis said:
I want to take you to Example 1 of section 1.5 p.33: "$\mbox{Hom} _R (M,N)$ as a left R-module.

Let $M$ and $N$ be two right R-modules. R is not necessarely commutative.
On 9th line of this example, Bland claims that $\mbox{Hom} _R (M,N)$ is a left R-module if we define $[r\bullet f](x)=f(xr)$ for $r\in R$ and $x\in M$. To prove that $\mbox{Hom} _R (M,N)$ is a left R-module, we have to prove conditions (1), (2), (3) and (4) of Definition 1.4.1 p.26 (adapted for left R-modules). Bland proves (3) as follows, $r\in R$, $s\in R$, $x\in M$:

$[s\bullet (r\bullet f)[(x)$ = $[r\bullet f](xs)$ = $[f]((xs)r)$ = $[f](x(sr))$ = $[(sr)\bullet f](x)$

To prove conditions (1), (2), and (4) is easy.

However, he omits to prove that if $f$ is an R-map then $[r\bullet f]$ is an R-map for $r\in R$, i.e., if $f\in \mbox{Hom} _R (M,N)$ then $[r\bullet f] \in \mbox{Hom} _R (M,N)$.

And that is my problem.

Given for $r\in R$, $a\in R$, and $x\in M$ is $[r\bullet f](x)=f(xr)$ and $f(xa)=f(x)a$, we have to prove that $[r\bullet f](xa)$ = $[r\bullet f](x)a$. Here is a start:

$[r\bullet f](xa)$ = $[f]((xa)r)$ = $[f](x(ar))$ = ? = $[r\bullet f](x)a$

Who can fill in the missing steps ?
Hi Steenis,

Just working through your post and checking Bland, Example 1 of section 1.5 p.33 ... ...

I can see why you want to prove if $f$ is an R-map then $[r\bullet f]$ is an R-map for $r\in R$ ... but I am having trouble completely following you ... ...

Perhaps you can help ...

I understand we have the given condition $[r\bullet f](x)=f(xr)$ ...

... BUT ...

where exactly does $f(xa)=f(x)a$ come from ... how does this arise exactly ... ?(presumably from $$f \in \mbox{Hom} _R (M,N)$$ ... somehow ...? )Hope you can help ...

Peter
*** EDIT ***

Oh God! it is probably one of the conditions on f being an R-module homomorphism (R-Linear map) ... is that right ... ?
 
Last edited:
Yes, you are right. By definition $f : M \longrightarrow N$ is an R-module homomorphism or R-linear map or R-map between right R-modules, if for all $x, y \in M$ and $r \in R$:
$f(x+y) = f(x) + f(y)$
and
$f(xr)=f(x)r$
 
Euge said:
Hi steenis,

If the given conditions are correct, then there is problem with Bland's claim here. If $R$ is commutative, then indeed $\operatorname{Hom}_R(M,N)$ is a left $R$-module with the given $R$-action. However, if $R$ is non-commutative, then the result need not hold. For suppose $R$ is a non-commutative, unital ring. We may view $R$ as a right $R$-module in the usual way. Consider the element $i \in \operatorname{Hom}_R(R,R)$ given by $i(r) = r$. Then $[b\cdot i](a) = i(ab) = ab$, but $[b\cdot i](1)a = i(1b)a = i(b)a = ba\neq ab = [b\cdot i](a)$. Hence, $[b\cdot i]\notin \operatorname{Hom}_R(R,R)$.

By the way, I've noticed that you and Peter are working on issues between Bland's and Rotman's texts. I will address some of those questions if I have time.

Thank you, Euge, for your counterexample, very good. I am not good with examples and counterexamples. And of course, the more input the better.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
Back
Top