I Bob and Alice, Wigner and his friend

Heidi
Messages
420
Reaction score
40
Hi Pfs,
I wrote in another threas that when a source emits maximally entangled
pairs of photons with nul global momentum and null global angular momentum, there is no local properies for the photons shared by Alice and Bob. i said that the the source only emits correlations. it has no sense to ask why the get the same result. No need to ftl signal.
there is another problem in the litterature: Wigner and his friend
Wigner makes a measurement on a particle and ger a result. then his friend who ignores the result considere the Wigner + particle system. For him there is still a superposition of different
states "Wigner + particle" all with given probabilities. If hi makes
the same measurement that Wigner on the particle he will get the
same result. Why
it seems to me (maybe falsely) that we have the same situation than with Bob and
Alice.
we could think that the first measurement gave a property to the partice (ignored by
his friend) and later his frienl will measure it. this suppose that le particle will keep it continuously during that time. but if space and time are discrete we will get to states at different moments just like Bon was not at the samd place than Alice.
It seems that we have here also a creation of correlations between a result now and a future result. We would get the same result in repeated measurements not because the measured state would stay unchanged but because of an entanglement between same measurements.
I wonder if this point of view is consistent :)
 
Physics news on Phys.org
One common response: No physically realistic friend is capable of any measurement that resolves a pure state of the macroscopic system (i.e. microscopic system + Wigner + lab environment). So epistemically speaking, we can safely use our classical intuition (Wigner knows something his friend doesn't)
 
Heidi said:
said that the the source only emits correlations
This makes no sense unless "correlations" means "quantum objects that can be detected by Alice and Bob". Which doesn't seem right.

Heidi said:
Wigner makes a measurement on a particle and ger a result. then his friend who ignores the result considere the Wigner + particle system.
Actually it's the other way around in the literature: Wigner's friend makes a measurement on a particle, then Wigner considers the friend + particle system.

Heidi said:
it seems to me (maybe falsely) that we have the same situation than with Bob and
Alice.
No, because neither Bob nor Alice are looking at a combined system composed of the other (Alice or Bob) plus the particle they are measuring.
 
I would like to know the validity of the following criticism of one of Zeilinger's latest papers https://doi.org/10.48550/arXiv.2507.07756 "violation of bell inequality with unentangled photons" The review is by Francis Villatoro, in Spanish, https://francis.naukas.com/2025/07/26/sin-entrelazamiento-no-se-pueden-incumplir-las-desigualdades-de-bell/ I will translate and summarize the criticism as follows: -It is true that a Bell inequality is violated, but not a CHSH inequality. The...
I understand that the world of interpretations of quantum mechanics is very complex, as experimental data hasn't completely falsified the main deterministic interpretations (such as Everett), vs non-deterministc ones, however, I read in online sources that Objective Collapse theories are being increasingly challenged. Does this mean that deterministic interpretations are more likely to be true? I always understood that the "collapse" or "measurement problem" was how we phrased the fact that...
This is not, strictly speaking, a discussion of interpretations per se. We often see discussions based on QM as it was understood during the early days and the famous Einstein-Bohr debates. The problem with this is that things in QM have advanced tremendously since then, and the 'weirdness' that puzzles those attempting to understand QM has changed. I recently came across a synopsis of these advances, allowing those interested in interpretational issues to understand the modern view...
Back
Top