MHB Boost Your Cosine-Sine Isotherm Sketching Skills | Expert Tips & Guidance

  • Thread starter Thread starter brunette15
  • Start date Start date
  • Tags Tags
    Graphing
brunette15
Messages
58
Reaction score
0
I am trying to sketch isotherms of the field cos(x)sinh(y). I am not sure how to begin with this. Can someone please help/hint me through what i have to do?
 
Physics news on Phys.org
Presumably, you actually have a temperature field, right? That is, $T=\cos(x)\sinh(y)$. In that case, you want to sketch whole bunch of curves in the $(x,y)$ plane of the form $C=\cos(x)\sinh(y)$. Why a constant? Because you're after the isotherms - the prefix "iso" meaning "same". In fact, you can solve this equation for $y$:
\begin{align*}
C&=\cos(x)\sinh(y) \\
\sinh(y)&=C \sec(x) \\
y&=\text{arcsinh}(C\sec(x)).
\end{align*}
So, pick a few $C$'s, plot the above function, and you've got your isotherms.
 
Ackbach said:
Presumably, you actually have a temperature field, right? That is, $T=\cos(x)\sinh(y)$. In that case, you want to sketch whole bunch of curves in the $(x,y)$ plane of the form $C=\cos(x)\sinh(y)$. Why a constant? Because you're after the isotherms - the prefix "iso" meaning "same". In fact, you can solve this equation for $y$:
\begin{align*}
C&=\cos(x)\sinh(y) \\
\sinh(y)&=C \sec(x) \\
y&=\text{arcsinh}(C\sec(x)).
\end{align*}
So, pick a few $C$'s, plot the above function, and you've got your isotherms.

Thankyou so much :)
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

Replies
7
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 3 ·
Replies
3
Views
5K