RicardoMP
- 48
- 2
Homework Statement
Following from \hat{b}^\dagger_j\hat{b}_j(\hat{b}_j<br /> \mid \Psi \rangle<br /> )=(|B_-^j|^2-1)\hat{b}_j<br /> \mid \Psi \rangle<br />, I want to prove that if I keep applying ##\hat{b}_j##, ## n_j##times, I'll get: (|B_-^j|^2-n_j)\hat{b}_j\hat{b}_j\hat{b}_j ...<br /> \mid \Psi \rangle<br />.
Homework Equations
Commutation relations: [\hat{b}^\dagger_j\hat{b}_j,\hat{b}_j]=-\hat{b}_j
Also: <br /> \langle \psi \mid<br /> \hat{b}^\dagger_j\hat{b}_j<br /> \mid \Psi \rangle<br /> =||\hat{b}_j<br /> \mid \Psi \rangle<br /> ||^2
The Attempt at a Solution
After proving for n=1, I went for n=2 and from there on the proof would be trivial. However, for n=2 I get:
\hat{b}^\dagger_j\hat{b}_j(\hat{b}_j\hat{b}_j<br /> \mid \Psi \rangle<br /> )=(|B_-^j|^2-1)\hat{b}_j\hat{b}_j<br /> \mid \Psi \rangle<br /> after using the commutation relation I referred above (the same for n>2). How do I get (|B_-^j|^2-2)\hat{b}_j\hat{b}_j<br /> \mid \Psi \rangle<br />?