unscientific
- 1,728
- 13
Homework Statement
Find surface and volume charge densities. Deduce electric field.
Homework Equations
The Attempt at a Solution
Volume charge density:
\epsilon_0 \epsilon_r \nabla . \vec E = \rho_f
Using ##\vec P = \chi \epsilon_0 \vec E = (\epsilon_r -1)\epsilon_0 \vec E##:
\left(\frac{\epsilon_r}{\epsilon_r -1}\right) \nabla . \vec P = \rho_f
Thus volume charge density:
\rho_f = \left(\frac{\epsilon_r}{\epsilon_r -1}\right) \frac{1}{r^2}\frac{\partial}{\partial r} \left[ P_0 r^3(a-r)\right]
\rho_f = \left(\frac{\epsilon_r}{\epsilon_r -1}\right) P_0 (3a-4r)
Surface charge density is less tedious:
\sigma_b = \vec P . \hat n = P_0 r(a-r)
Isn't the electric field within the sphere simply ##\vec E = \frac{1}{\epsilon_0 (\epsilon_r -1)} \vec P = \frac{P_0}{\epsilon_0 (\epsilon_r -1)} r(a-r) \hat r##?
For electric field outside sphere:
\epsilon_0 E (4\pi r^2) = \int_0^a \rho_f dr
E = \frac{\epsilon_r P_0}{4\pi \epsilon_0 (\epsilon_r -1)} \left(\frac{a}{r}\right)^2
Last edited: