Undergrad Boundary conditions for displacement vector D

Click For Summary
In Griffith's electrodynamics, the equation D1.a - D2.a = sigma.a arises from evaluating the displacement vector D across a boundary surface. The minus sign in the equation is attributed to the orientation of the surface normal vector, which is opposite on either side of the boundary. When integrating over a Gaussian "pill box," contributions from the surfaces perpendicular to the boundary cancel, leaving only the surface charge effect. The result shows that the difference in D across the boundary is proportional to the surface charge density sigma. The discussion emphasizes the importance of understanding vector orientations and their impact on the resulting equations.
Zubair Ahmad
Messages
34
Reaction score
0
Griffith's writes in chapter 7 electrodynamics that D1.a - D2.a = sigma. a.
But minus sine comes when we evaluate the dot product first.
How does the minus sign occur without evaluating the dot product?
 
Physics news on Phys.org
You have simply to do the integral over the Gaussian "pill box" shown in Fig. 7.48 in Griffiths's book (4th edition). Making the pillbox very small, so that ##\vec{D}## on both sides of the boundary surface can be taken as constant along the area ##a##. The contributions from the four surfaces of the pill box perpendicular to the boundary surface cancel pairwise, but there may be a surface charge along the boundary surface, and then, even if you make the height of the pill box arbitrarily small, you always get a non-zero result, namely the total charge within the pill box, which is ##\sigma a##, and thus you have
$$\vec{n} \cdot (\vec{D}_1-\vec{D}_2)=\sigma.$$
Here ##\vec{D}_1## (##\vec{D}_2##) denotes the value of ##\vec{D}## when approaching the point on the boundary surface under investigation from side 1 (side 2) of the boundary surface. The minus in the above equation comes from the fact that the surface normal vector of the pill box parallel to the boundary at side 2 is just ##-\vec{n}##, where ##\vec{n}## is the direction of the surface normal vector at side 1 (see again Fig. 7.48, where in my notation ##\vec{a}=a \vec{n}##).
 
Still confusing!
 
Why? Where is your problem?
 
I'm saying that negative sign would come due to dot product.so it can't be written before it.
 
The negative sign comes, because the surface normal vector of the part of the pill box in medium 1 is ##\vec{n}## and that of the part of the pill box in medium 2 is ##-\vec{n}##. Thus the result of the surface integral over the pill box is
$$a \vec{n} \cdot \vec{D}_1 + a (-\vec{n}) \cdot \vec{D}_2 = a \vec{n} \cdot (\vec{D}_1-\vec{D}_2).$$
Look again at the figure in the book. It's really quite ovious.
 
Thread 'What is the pressure of trapped air inside this tube?'
As you can see from the picture, i have an uneven U-shaped tube, sealed at the short end. I fill the tube with water and i seal it. So the short side is filled with water and the long side ends up containg water and trapped air. Now the tube is sealed on both sides and i turn it in such a way that the traped air moves at the short side. Are my claims about pressure in senarios A & B correct? What is the pressure for all points in senario C? (My question is basically coming from watching...

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 8 ·
Replies
8
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
505
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K