I Bounding the volume distortion of a manifold

eyenir
Messages
3
Reaction score
0
Let $U$ be a compact set in $\mathbb{R}^k$ and let $f:U\to\mathbb{R}^n$ be a $C^1$ bijection. Consider the manifold $M=f(U)$.

Its volume distortion is defined as $G=det(DftDf).$ If $n=1$, one can deduce that $G=1+|\nabla f|^2$.

What happens for $n>1$? Can one bound from below this $G$? If so: under which assumptions?
 
Physics news on Phys.org
eyenir said:
Let $U$ be a compact set in $\mathbb{R}^k$ and let $f:U\to\mathbb{R}^n$ be a $C^1$ bijection.
did not you know that the image of a compact set under a continuous mapping is a compact set?
 
Last edited:
So you suggest taking a finite sub-cover ${U_i}$ such that $M|_{U_i}=\{(x_1,\dots,x_{n-1},g_i\}$ where $g_i:\mathbb{R^{n-1}\to R}$ is a $C^1$ function on $U_i$?
 
Hello! There is a simple line in the textbook. If ##S## is a manifold, an injectively immersed submanifold ##M## of ##S## is embedded if and only if ##M## is locally closed in ##S##. Recall the definition. M is locally closed if for each point ##x\in M## there open ##U\subset S## such that ##M\cap U## is closed in ##U##. Embedding to injective immesion is simple. The opposite direction is hard. Suppose I have ##N## as source manifold and ##f:N\rightarrow S## is the injective...

Similar threads

Back
Top