I bra-ket with adjoints identity

nomadreid
Gold Member
Messages
1,750
Reaction score
243
TL;DR Summary
I thought that, if B is the adjoint of A, <v|A|w>=<v|(A|w>)=<(v|B)|w>. But a simple example with real matrices trips me up.
Continuing the summary: the example in question is
adjoint.png

Obviously I am understanding some extremely elementary point incorrectly. What? Many thanks!
 
Physics news on Phys.org
The correct equation is:
$$\langle v|A|w\rangle = \langle w|A^{\dagger}|v \rangle^*$$
 
nomadreid said:
TL;DR Summary: I thought that, if B is the adjoint of A, <v|A|w>=<v|(A|w>)=<(v|B)|w>. But a simple example with real matrices trips me up.

Continuing the summary: the example in question is
View attachment 357730
Obviously I am understanding some extremely elementary point incorrectly. What? Many thanks!
The formula is
$$
\bigl\langle A(x),y \bigr\rangle = \bigl\langle x, A^\dagger (y) \bigr\rangle .
$$

This means for your example with ##x=(0,1)## and ##y=(3,4)## that
\begin{align*}
\bigl\langle A(x),y \bigr\rangle &=\bigl\langle \begin{pmatrix}1&2\\3&4\end{pmatrix}\begin{pmatrix}0\\1\end{pmatrix}\, , \,\begin{pmatrix}3\\4\end{pmatrix} \bigr\rangle =\bigl\langle \begin{pmatrix}2\\4\end{pmatrix}\, , \,\begin{pmatrix}3\\4\end{pmatrix} \bigr\rangle =22\\[12pt]
\bigl\langle x , A^\dagger (y)\bigr\rangle &= \bigl\langle \begin{pmatrix}0\\1\end{pmatrix}\, , \,\begin{pmatrix}1&3\\2&4\end{pmatrix}\begin{pmatrix}3\\4\end{pmatrix} \bigr\rangle =\bigl\langle \begin{pmatrix}0\\1\end{pmatrix}\, , \,\begin{pmatrix}15\\22\end{pmatrix} \bigr\rangle =22
\end{align*}
or the other way around
$$
\bigl\langle A^\dagger (x),y \bigr\rangle = \bigl\langle x, A(y) \bigr\rangle =25 .
$$
What you have calculated was the associativity of matrix multiplication with two different matrices:
##XAY \neq_{i.g.} XA^\dagger Y.##
 
  • Like
Likes nomadreid and PeroK
Many,many thanks, PeroK and fresh42!
 
Thread 'Derivation of equations of stress tensor transformation'
Hello ! I derived equations of stress tensor 2D transformation. Some details: I have plane ABCD in two cases (see top on the pic) and I know tensor components for case 1 only. Only plane ABCD rotate in two cases (top of the picture) but not coordinate system. Coordinate system rotates only on the bottom of picture. I want to obtain expression that connects tensor for case 1 and tensor for case 2. My attempt: Are these equations correct? Is there more easier expression for stress tensor...
Back
Top