I bra-ket with adjoints identity

nomadreid
Gold Member
Messages
1,748
Reaction score
243
TL;DR Summary
I thought that, if B is the adjoint of A, <v|A|w>=<v|(A|w>)=<(v|B)|w>. But a simple example with real matrices trips me up.
Continuing the summary: the example in question is
adjoint.png

Obviously I am understanding some extremely elementary point incorrectly. What? Many thanks!
 
Physics news on Phys.org
The correct equation is:
$$\langle v|A|w\rangle = \langle w|A^{\dagger}|v \rangle^*$$
 
nomadreid said:
TL;DR Summary: I thought that, if B is the adjoint of A, <v|A|w>=<v|(A|w>)=<(v|B)|w>. But a simple example with real matrices trips me up.

Continuing the summary: the example in question is
View attachment 357730
Obviously I am understanding some extremely elementary point incorrectly. What? Many thanks!
The formula is
$$
\bigl\langle A(x),y \bigr\rangle = \bigl\langle x, A^\dagger (y) \bigr\rangle .
$$

This means for your example with ##x=(0,1)## and ##y=(3,4)## that
\begin{align*}
\bigl\langle A(x),y \bigr\rangle &=\bigl\langle \begin{pmatrix}1&2\\3&4\end{pmatrix}\begin{pmatrix}0\\1\end{pmatrix}\, , \,\begin{pmatrix}3\\4\end{pmatrix} \bigr\rangle =\bigl\langle \begin{pmatrix}2\\4\end{pmatrix}\, , \,\begin{pmatrix}3\\4\end{pmatrix} \bigr\rangle =22\\[12pt]
\bigl\langle x , A^\dagger (y)\bigr\rangle &= \bigl\langle \begin{pmatrix}0\\1\end{pmatrix}\, , \,\begin{pmatrix}1&3\\2&4\end{pmatrix}\begin{pmatrix}3\\4\end{pmatrix} \bigr\rangle =\bigl\langle \begin{pmatrix}0\\1\end{pmatrix}\, , \,\begin{pmatrix}15\\22\end{pmatrix} \bigr\rangle =22
\end{align*}
or the other way around
$$
\bigl\langle A^\dagger (x),y \bigr\rangle = \bigl\langle x, A(y) \bigr\rangle =25 .
$$
What you have calculated was the associativity of matrix multiplication with two different matrices:
##XAY \neq_{i.g.} XA^\dagger Y.##
 
  • Like
Likes nomadreid and PeroK
Many,many thanks, PeroK and fresh42!
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top