Branch points of a complex function

  • Thread starter Thread starter Hill
  • Start date Start date
  • Tags Tags
    Complex function
Hill
Messages
735
Reaction score
575
Homework Statement
Consider the multifunction ##f(z) = \sqrt {z - 1} \sqrt[3] {z - i}##.
Where are the branch points and what are their orders?
Relevant Equations
##e^{i \frac \theta n} = e^{i \frac {\theta + 2 \pi n} n}##
My answer: one branch point is ##1## of the order 1, another is ##i## of the order 2.
My question is, how can I be sure that these are the only branch points?
 
Physics news on Phys.org
Prove by construction that, at an arbitrary point in the complex plane excluding 1 and ##i##, each branch of the function ##f## has a continuous inverse. At least one branch of a function does not have a continuous inverse at a branch point. So if every branch has a continuous inverse, it cannot be a branch point.
 
  • Like
Likes Hill and WWGD
andrewkirk said:
Prove by construction that, at an arbitrary point in the complex plane excluding 1 and ##i##, each branch of the function ##f## has a continuous inverse. At least one branch of a function does not have a continuous inverse at a branch point. So if every branch has a continuous inverse, it cannot be a branch point.
Yes, good point, branch point of product doesn't necessarily coincide with the intersection of the branch points. Could this be expressed in terms of the monodromy groups?
 
andrewkirk said:
Prove by construction that, at an arbitrary point in the complex plane excluding 1 and ##i##, each branch of the function ##f## has a continuous inverse. At least one branch of a function does not have a continuous inverse at a branch point. So if every branch has a continuous inverse, it cannot be a branch point.
If I understand this test correctly:

Let's take a simpler function, ##f(z)=\sqrt z##. It has branch point at 0.
The inverse of this function is ##z(f)=f^2##.
Isn't ##z(f)## continuous everywhere, including the branch point ##f(0)=0##?
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...

Similar threads

Replies
12
Views
4K
Replies
6
Views
3K
Replies
2
Views
2K
Replies
13
Views
2K
Replies
11
Views
1K
Replies
5
Views
2K
Replies
17
Views
3K
Back
Top