MHB Bridge Hands: 5/6/2 Card Combination

  • Thread starter Thread starter Raerin
  • Start date Start date
  • Tags Tags
    Combination
Raerin
Messages
46
Reaction score
0
A bridge hand consists of 13 cards. How many bridge hands include 5 cards of one suit, 6 cards of a second suit and 2 cards of a third suit?
 
Mathematics news on Phys.org
What if the question asked instead:

How many bridge hands include 5 cards of hearts, 6 cards of spades and 2 cards of diamonds?

Wold you be able answer that?
 
MarkFL said:
What if the question asked instead:

How many bridge hands include 5 cards of hearts, 6 cards of spades and 2 cards of diamonds?

Wold you be able answer that?

13C5 * 13C6 * 13C2 = 172,262,376

If my question is the same as this one then my textbook's answer key is wrong. The textbook says the answer is 4 xxx, xxx, xxx
 
Raerin said:
13C5 * 13C6 * 13C2?

If my question is the same as this one then my textbook's answer key is wrong.

Yes, good! :D That is correct, but this is for one specific combination of suits only.

Now you want to make it general. You want to multiply this by the number of ways to choose 3 suits from 4.
 
MarkFL said:
Yes, good! :D That is correct, but this is for one specific combination of suits only.

Now you want to make it general. You want to multiply this by the number of ways to choose 3 suits from 4.

I realized after I left that we need to find the permutations, not the combinations regarding the four suits, since order matters in this case because there are a different number of each suit. Hence, the number $N$ of the described bridge hands is:

$$N=\frac{4!}{(4-3)!}\cdot{13 \choose 5}\cdot{13 \choose 6}\cdot{13 \choose 2}=4134297024$$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top